返回列表 发布新帖

[生物] 猪配合饲料多品质近红外光谱关键变量筛选与模型建立

7 0
admin 发表于 2025-3-6 00:30 | 查看全部 阅读模式

猪配合饲料多品质近红外光谱关键变量筛选与模型建立
目的  基于饲料近红外光谱数据筛选影响猪配合饲料主要品质指标的关键波长变量, 从而建立饲料品质无损快速定量校正模型, 进而提高饲料品质无损快速检测效率。方法  采集饲料样品近红外光谱数据并获取水分、粗蛋白、粗脂肪、粗纤维参考值数据; 剔除异常值后采用基于联合X-Y距离样本集划分法(sample set partitioning based on joint X-Y distance, SPXY)划分校正集和外部验证集; 基于校正集数据采用蒙特卡罗-无信息变量消除-连续投影算法分别针对4个品质指标筛选25、20、15、10、5个关键变量, 分别建立校正模型并对外部验证集进行预测。结果  针对饲料水分、粗蛋白、粗脂肪、粗纤维所选关键变量个数分别为15、25、15、15, 模型维数分别为9、11、10、9, 测定系数分别为0.8288、0.8605、0.9338、0.8327, 校正均方根误差分别为0.17、0.81、0.31、0.22, 交互验证均方根误差分别为0.19、0.93、0.34、0.23, 相对预测性能分别为2.79、2.38、4.01、2.89。结论  通过变量筛选结合外部验证结果表明, 在保证模型准确度的前提下, 所选关键变量数明显少于全谱变量数, 可为提高饲料多品质无损快速定量检测工作效率提供一定的参考。

Objective  Based on the near-infrared spectra of feedstuff samples for swine, to select key wavelength variables for the main quality indices in feedstuff, so as to develop the non-destructive rapid quantitative calibration models of quality indices of feedstuff, and thereby to improve the efficiency of non-destructive and rapid detection. Methods  The near-infrared spectra data of feedstuff samples were collected and the specified values of moisture, crude protein, crude fat, and crude fiber were obtained. After outlier elimination, sample set partitioning based on joint X-Y distance (SPXY) algorithm was used to divide the data set into the calibration set and external validation set. Based on the calibration set data, Monte-Carlo-uninformative variable elimination-successive projection algorithm was used to select 25, 20, 15, 10, and 5 key variables for the 4 quality indices, respectively. Based on the key-variables data, the calibration models were developed and the external validation sets were predicted. Results  The number of key variables selected for feed moisture, crude protein, crude fat, and crude fiber were 15, 25, 15, and 15 respectively, the number of the model factors were 9, 11, 10, and 9 respectively, the determination coefficients were 0.8288, 0.8605, 0.9338, and 0.8327 respectively, the root mean square errors of calibration were 0.17, 0.81, 0.31 and 0.22 respectively, the root mean square errors of cross-validation were 0.19, 0.93, 0.34 and 0.23 respectively, and the ratio performance deviations were 2.79, 2.38, 4.01 and 2.89 respectively. Conclusion  It is demonstrated by the results of key variables selection combined with the prediction of external validation set that the numbers of the key variables selected are less than that of the full spectra obviously for the 4 quality indices when the accuracy of the models are ensured, which can provide a certain reference for improving the efficiency of non-destructive and rapid quantitative detection of the quality of feedstuff.

标题:猪配合饲料多品质近红外光谱关键变量筛选与模型建立
英文标题:Key variables selection and models development based on near-infrared spectra for the multi-qualities in formula feedstuff for swine

作者:
王坤 北京工商大学人工智能学院
吴静珠 北京工商大学人工智能学院
王冬 北京农业质量标准与检测技术研究中心
朱业伟 北京格致同德科技有限公司
韩平 北京农业质量标准与检测技术研究中心

中文关键词:猪配合饲料,近红外光谱,蒙特卡罗-无信息变量消除-连续投影算法,
英文关键词:formula feedstuff for swine,near-infrared spectroscopy,Monte-Carlo-uninformative variable elimination- successive projection algorithm,

发表日期:2020-07-06
2025-2-27 20:25 上传
文件大小:
471.46 KB
下载次数:
60
高速下载
【温馨提示】 您好!以下是下载说明,请您仔细阅读:
1、推荐使用360安全浏览器访问本站,选择您所需的PDF文档,点击页面下方“本地下载”按钮。
2、耐心等待两秒钟,系统将自动开始下载,本站文件均为高速下载。
3、下载完成后,请查看您浏览器的下载文件夹,找到对应的PDF文件。
4、使用PDF阅读器打开文档,开始阅读学习。
5、使用过程中遇到问题,请联系QQ客服。

本站提供的所有PDF文档、软件、资料等均为网友上传或网络收集,仅供学习和研究使用,不得用于任何商业用途。
本站尊重知识产权,若本站内容侵犯了您的权益,请及时通知我们,我们将尽快予以删除。
  • 手机访问
    微信扫一扫
  • 联系QQ客服
    QQ扫一扫
2022-2025 新资汇 - 参考资料免费下载网站 最近更新浙ICP备2024084428号
关灯 返回顶部
快速回复 返回顶部 返回列表