返回列表 发布新帖

[生物] 基于近红外光谱法快速测定许氏平鲉脂肪和 水分含量的方法研究

4 0
admin 发表于 2025-1-30 12:30 | 查看全部 阅读模式

基于近红外光谱法快速测定许氏平鲉脂肪和 水分含量的方法研究
目的  建立近红外光谱法结合偏最小二乘法测定许氏平鲉鱼肉中的脂肪和水分含量, 以期简便、快速地对许氏平鲉进行品质分析与评价。方法  采用常规分析手段测定70个样品的脂肪和水分含量, 同时采集其近红外光谱数据, 结合偏最小二乘法(partial least square, PLS)建立许氏平鲉鱼肉中脂肪和水分的定量预测模型, 并对比不同光谱预处理方法、光谱范围和因子数对定量预测模型的影响。结果  光谱经Savitzky-Golay(S-G)和标准正态变量变换(standardized normal variate, SNV)预处理后, 在5341.85~4007.36 cm-1、6556.79~5345.71 cm-1和8651.10~7162.33 cm-1光谱范围内, 选取主因子数10, 建立脂肪的校正模型性能最优; 光谱经过SNV预处理后, 在8886.38~4061.35cm-1光谱范围内, 分别选取主因子数为9时, 建立的水分的校正模型性能最优。脂肪和水分含量相对最优PLS模型的校正集相关系数分别为0.9918和0.9912, 校正标准偏差分别为0.2680和0.3300, 交叉验证相关系数分别为0.9820和0.9810, 交叉验证均方差分别为0.3980和0.4850, 验证集相关系数分别为0.9804和0.9798, 验证集均方差分别为0.3260和0.3070。结论  本方法可较为准确地预测许氏平鲉鱼肉中的脂肪和水分含量, 能够满足快速分析评价许氏平鲉品质的要求。

Objective  To establish a method for determination of fat and moisture content in Sebastes schlegeli by near infrared spectroscopy (NIRS) combined with partial least square (PLS), so as to evaluate the quality of Sebastes schlegeli simply and quickly. Method  Fat and moisture results of 70 samples were obtained by ordinary analytical methods. Meanwhile, NIRS data of these samples were investigated in order to establish quantitative prediction model for Sebastes schlegeli nutrients combined with PLS. The influences of different spectra pretreatment methods, different spectra regions and the number of factors were compared. Results  The performance of fat content model was established in 5341.85~4007.36 cm-1, 6556.79~5345.71 cm-1 and 8651.10~7162.33 cm-1 after Savitzky-Golay (S-G) and standard normal variate (SNV) pretreatment, and the optimal main factor number of 10 was selected. The performance of moisture content model was established in 8886.38~4061.35 cm-1 with SNV pretreatment, and nine factors were optimal. The correlation coefficients of calibration (Rc) of fat and moisture were 0.9918 and 0.9912, and the root mean square errors of calibration (RMSEC) were 0.2680 and 0.3300, respectively. The correlation coefficients of cross validation (Rcv) were 0.9820 and 0.9810, and the root mean square errors of cross validation (RMSECV) were 0.9804 and 0.9798. The correlation coefficients of prediction (Rp) were 0.9804 and 0.9798, and the root mean square errors of prediction (RMSEP) were 0.3260 and 0.3070. Conclusion  The method has acceptable accuracy and prediction capability, which is suitable for rapid quality analysis and evaluation of Sebastes schlegeli.

标题:基于近红外光谱法快速测定许氏平鲉脂肪和 水分含量的方法研究
英文标题:Research on rapid determination of fat and moisture content of Sebastes schlegeli by near infrared spectroscopy

作者:
孙永 中国水产科学研究院黄海水产研究所
刘申申 中国水产科学研究院黄海水产研究所
李智慧 中国水产科学研究院黄海水产研究所
刘楠 中国水产科学研究院黄海水产研究所
周德庆 中国水产科学研究院黄海水产研究所

中文关键词:近红外光谱法,脂肪,水分,偏最小二乘法,许氏平鲉鱼,
英文关键词:near infrared spectroscopy,fat,moisture,partial least square,Sebastes schlegeli,

发表日期:2016-09-29
2025-1-29 19:48 上传
文件大小:
19.13 MB
下载次数:
60
高速下载
【温馨提示】 您好!以下是下载说明,请您仔细阅读:
1、推荐使用360安全浏览器访问本站,选择您所需的PDF文档,点击页面下方“本地下载”按钮。
2、耐心等待两秒钟,系统将自动开始下载,本站文件均为高速下载。
3、下载完成后,请查看您浏览器的下载文件夹,找到对应的PDF文件。
4、使用PDF阅读器打开文档,开始阅读学习。
5、使用过程中遇到问题,请联系QQ客服。

本站提供的所有PDF文档、软件、资料等均为网友上传或网络收集,仅供学习和研究使用,不得用于任何商业用途。
本站尊重知识产权,若本站内容侵犯了您的权益,请及时通知我们,我们将尽快予以删除。
  • 手机访问
    微信扫一扫
  • 联系QQ客服
    QQ扫一扫
2022-2025 新资汇 - 参考资料免费下载网站 最近更新浙ICP备2024084428号
关灯 返回顶部
快速回复 返回顶部 返回列表