返回列表 发布新帖

[电工技术] 基于增强型去噪自编码器与随机森林的电力系统扰动分类方法

6 0
admin 发表于 2025-1-28 12:30 | 查看全部 阅读模式

基于增强型去噪自编码器与随机森林的电力系统扰动分类方法
摘要:实时准确的电力系统扰动分类有利于避免大规模停电事故的发生。然而同步相量测量单元的数据质量问题严重影响其在扰动分类上的应用。针对此问题,提出了一种基于增强型去噪自编码器与随机森林的扰动分类方法。首先,利用长短期记忆构造一种增强型去噪自编码器,建立不良数据与正常数据间的映射关系。进一步,根据不同量测的验证损失变化趋势,提出了一种自适应权重多任务去噪网络,能够自适应更新各量测对应的损失函数权重以降低重构误差。最后,利用随机森林对特征进行分类,并通过贝叶斯优化对其超参数调优。基于IEEE 39系统,在不同不良数据比例下对该方法测试,验证所提方法的准确性和快速性。最后,通过现场数据验证了所提方法具有较高的泛化性。

Abstract:To avoid the occurrence of large-scale power outage, the realtime and accurate power system disturbance classification is a helpful measure. However, unsatisfying data quality of synchronous phasor measurement units seriously affects its application in disturbance classification. For this reason, a power system disturbance classification method based on the combination of adaptively weighted long short-term denoising autoencoder and random forest was proposed. Firstly, the long short-term memory was utilized to construct a kind of enhanced denoising autoencoder to establish mapping relation between bad data and normal data was constructed. Secondly, according to the change trend of verification loss of different measurements, an adaptive weighted multitask denoising network, which could adaptively update the weight of loss function corresponding to each measurement to reduce the reconstruction error, was presented. Finally, the random forest classifier was used to classify the encoding features, and the Bayesian optimization algorithm was used to optimize the hyperparameters. The simulation results on IEEE 39 bus system show that the proposed method possesses better accuracy and real-time performance for bad data level from different phase measurement units, and it is verified by field data that the proposed method has higher generalization.

标题:基于增强型去噪自编码器与随机森林的电力系统扰动分类方法
英文标题:A Power System Disturbance Classification Method Based on Enhanced Denoising Autoencoder and Random Forest

作者:李子康, 刘灏, 毕天姝, 杨奇逊,

关键词:同步相量测量单元, 电力系统扰动分类, 长短期记忆网络, 去噪自编码器, 自适应权重, 随机森林, 贝叶斯优化,

发表日期:2022-04-10
2025-1-27 18:56 上传
文件大小:
2.35 MB
下载次数:
60
高速下载
【温馨提示】 您好!以下是下载说明,请您仔细阅读:
1、推荐使用360安全浏览器访问本站,选择您所需的PDF文档,点击页面下方“本地下载”按钮。
2、耐心等待两秒钟,系统将自动开始下载,本站文件均为高速下载。
3、下载完成后,请查看您浏览器的下载文件夹,找到对应的PDF文件。
4、使用PDF阅读器打开文档,开始阅读学习。
5、使用过程中遇到问题,请联系QQ客服。

本站提供的所有PDF文档、软件、资料等均为网友上传或网络收集,仅供学习和研究使用,不得用于任何商业用途。
本站尊重知识产权,若本站内容侵犯了您的权益,请及时通知我们,我们将尽快予以删除。
  • 手机访问
    微信扫一扫
  • 联系QQ客服
    QQ扫一扫
2022-2025 新资汇 - 参考资料免费下载网站 最近更新浙ICP备2024084428号
关灯 返回顶部
快速回复 返回顶部 返回列表