返回列表 发布新帖

[电工技术] 基于集群辨识和卷积神经网络−双向长短期记忆−时序模式注意力机制的区域级短期负荷预测

8 0
admin 发表于 2025-1-28 09:00 | 查看全部 阅读模式

基于集群辨识和卷积神经网络−双向长短期记忆−时序模式注意力机制的区域级短期负荷预测
摘要:为了解决区域级短期电力负荷预测时输入特征过多和负荷时序性较强的问题,提出一种基于集群辨识和卷积神经网络(convolutional neural networks,CNN)−双向长短期记忆网络(bi-directional long short-term memory,BiLSTM)−时序模式注意力机制(temporal pattern attention, TPA)的预测方法。首先,将用电模式和天气作为影响因素,基于二阶聚类算法对区域内的负荷节点进行集群辨识,再从每个集群中挑选代表特征作为深度学习模型的输入,这样既能减少输入特征维度,降低计算复杂度,又能综合考虑预测区域的整体特征,提升预测精度。然后,针对区域电力负荷时序性的特点,用CNN-BiLSTM-TPA模型完成训练和预测,该模型能提取输入数据的双向信息生成隐状态矩阵,并对隐状态矩阵的重要特征加权,从多时间步上捕获双向时序信息用于预测。最后,在美国加利福尼亚州实例上分析验证了所提方法的有效性。

Abstract:In this paper, a predictive method based on cluster identification and convolutional neural network-bi-directional long short-term memory-temporal pattern attention (CNN-BiLSTM-TPA) is proposed to solve the problem of excessive input features and strong load periodicity in regional short-term power load forecasting. Firstly, load nodes within the region are identified as clusters based on second-order clustering algorithm with consideration of power consumption mode and weather as the influence factors. And then, the representative features are selected from each cluster as inputs of the deep learning model, which can not only reduce the input feature dimension and decrease the computational complexity, but also comprehensively consider the overall characteristics of the prediction region to improve the prediction accuracy. Thereafter, aiming at the strong load periodicity of regional power load, the CNN-BiLSTM-TPA model is trained and applied for prediction, extracting the bi-directional information from the input data to generate the hidden state matrix and weighing the important features of the hidden state matrix, while capturing the bi-directional time series information on multiple time steps for prediction. Finally, the effectiveness of proposed method is verified using the actual load data in California, USA.

标题:基于集群辨识和卷积神经网络−双向长短期记忆−时序模式注意力机制的区域级短期负荷预测
英文标题:Regional Short-term Load Forecasting Based on Cluster Identification and Convolutional Neural Network-Bi-directional Long Short-term Memory-temporal Pattern Attention

作者:陈晓梅, 肖徐东,

关键词:短期电力负荷预测, 双向长短期记忆网络, 时序模式注意力机制, 集群辨识, 卷积神经网络,

发表日期:2024-02-19
2025-1-27 18:51 上传
文件大小:
3.12 MB
下载次数:
60
高速下载
【温馨提示】 您好!以下是下载说明,请您仔细阅读:
1、推荐使用360安全浏览器访问本站,选择您所需的PDF文档,点击页面下方“本地下载”按钮。
2、耐心等待两秒钟,系统将自动开始下载,本站文件均为高速下载。
3、下载完成后,请查看您浏览器的下载文件夹,找到对应的PDF文件。
4、使用PDF阅读器打开文档,开始阅读学习。
5、使用过程中遇到问题,请联系QQ客服。

本站提供的所有PDF文档、软件、资料等均为网友上传或网络收集,仅供学习和研究使用,不得用于任何商业用途。
本站尊重知识产权,若本站内容侵犯了您的权益,请及时通知我们,我们将尽快予以删除。
  • 手机访问
    微信扫一扫
  • 联系QQ客服
    QQ扫一扫
2022-2025 新资汇 - 参考资料免费下载网站 最近更新浙ICP备2024084428号
关灯 返回顶部
快速回复 返回顶部 返回列表