返回列表 发布新帖

[电工技术] 基于经验模态分解与长短时记忆网络的配电网故障原因识别方法

5 0
admin 发表于 2025-1-28 15:00 | 查看全部 阅读模式

基于经验模态分解与长短时记忆网络的配电网故障原因识别方法
摘要:针对识别配电网故障原因,目前的“人工巡线”方法,不仅耗费大量的人力物力资源,而且延长了停电时间。因此,提出一种基于数据驱动的配电网故障原因识别方法。首先通过对大量现场记录的故障波形数据进行分析,得到不同原因故障的机理以及波形特征,提出一种基于经验模态分解 (empirical mode decomposition,EMD) 和主成分分析(principal component analysis,PCA) 的故障特征提取方法。通过EMD将故障时域波形按照不同的时间尺度进行分解,得到具有信号局部特征的本征模态函数(intrinsic mode function,IMF) 分量。其次利用PCA对多个IMF分量进行降维,提取IMF序列中的主要特征分量并将其组成特征向量。最后提出一种基于长短期记忆网络的故障原因分类模型,用于提取特征序列的动态时间尺度特征并实现故障原因的分类。使用实际现场数据的实验结果表明,该故障原因分类模型具有较高的准确度。

Abstract:In order to identify fault causes of distribution networks, currently used artificial patrol inspection not only consumes a lot of manpower and material but also prolongs the power outage time. For this reason, a data driven based fault cause identifying for distribution network was proposed. Firstly, by means of analyzing a lot of spot-recorded fault waveform data the mechanism of different fault causes and the wave characteristics were obtained, and a fault feature extraction method based on empirical mode decomposition (abbr. EMD) and principal component analysis (abbr. PCA) was proposed. Secondly, through EMD the time domain waveform of the fault was decomposed according to different time scales to obtain intrinsic mode function (abbr. IMF) components possessing local features of the signal. Thirdly, by use of PCA the dimensionality reduction of multi-IMF components were conducted and the principal characteristic components in IMF series were extracted to compose them into eigenvectors. Finally, a fault cause classification model based on long-short term memory (abbr. LSTM) network was put forward to extract dynamic time-scale feature and to realize the classification of fault causes. The experiment results, which utilizes practical field data, show that the proposed fault cause classification model possesses a higher accuracy.

标题:基于经验模态分解与长短时记忆网络的配电网故障原因识别方法
英文标题:Fault Cause Identification Method of Distribution Network Based on Empirical Mode Decomposition and Long-Short Term Memory Network

作者:于希娟, 李欣, 宣振文, 刘硕, 刘灏,

关键词:故障原因识别, 配电网, LSTM网络, EMD分解, 主成分分析, 数据驱动,

发表日期:2023-08-10
2025-1-27 18:49 上传
文件大小:
2.91 MB
下载次数:
60
高速下载
【温馨提示】 您好!以下是下载说明,请您仔细阅读:
1、推荐使用360安全浏览器访问本站,选择您所需的PDF文档,点击页面下方“本地下载”按钮。
2、耐心等待两秒钟,系统将自动开始下载,本站文件均为高速下载。
3、下载完成后,请查看您浏览器的下载文件夹,找到对应的PDF文件。
4、使用PDF阅读器打开文档,开始阅读学习。
5、使用过程中遇到问题,请联系QQ客服。

本站提供的所有PDF文档、软件、资料等均为网友上传或网络收集,仅供学习和研究使用,不得用于任何商业用途。
本站尊重知识产权,若本站内容侵犯了您的权益,请及时通知我们,我们将尽快予以删除。
  • 手机访问
    微信扫一扫
  • 联系QQ客服
    QQ扫一扫
2022-2025 新资汇 - 参考资料免费下载网站 最近更新浙ICP备2024084428号
关灯 返回顶部
快速回复 返回顶部 返回列表