返回列表 发布新帖

[电工技术] 基于长短期记忆神经网络组合算法的短期电力负荷预测

10 0
admin 发表于 2025-1-28 13:30 | 查看全部 阅读模式

基于长短期记忆神经网络组合算法的短期电力负荷预测
摘要:短期电力负荷具有不平稳、随机性强等特点,传统的负荷预测方法在建模中常表现出一定的局限性。为提高预测精度,提出了一种基于互补集合经验模态分解(complement-ary ensemble empirical mode decomposition, CEEMD)、长短期记忆 (long short-term memory, LSTM) 神经网络和多元线性回归 (multiple linear regression, MLR) 方法组合而成的CEEMD-LSTM-MLR短期电力负荷预测方法。首先将电力负荷数据通过CEEMD分解为高频分量和低频分量;将复杂的高频分量通过经贝叶斯优化的LSTM神经网络进行预测,周期性的低频分量通过MLR方法进行预测,最后将各分量叠加重构得到最终预测结果。通过算例分析,一方面将不同分解方法进行对比,一方面将不同模型进行对比并探究贝叶斯调参对结果的影响,验证了所提模型更具可靠性与准确性。

Abstract:Short-term power load possesses such features as instability and randomness, so traditional load forecasting methods of present a certain limitation during the modeling. To improve forecasting accuracy, a short-term load forecasting method based on the combination of complementary ensemble empirical mode decomposition (abbr. CEEMD), long short-term memory (abbr. LSTM) and multiple linear regression (abbr. MLR) was proposed. Firstly, by means of CEEMD the power load data was composed into high-frequency component and low-frequency component, then the complex high-frequency component was predicted by Bayesian optimized LSTM neural network, and the periodical low-frequency component was predicted by MLR. Finally, each component was superposed and reconstructed to obtain the final prediction result. In the computing example, in one hand different decomposition methods were compared, and in the other hand different models and the influence of Bayesian parameter adjustment on prediction results were compared. Thus, both reliability and accuracy of the proposed method are verified.

标题:基于长短期记忆神经网络组合算法的短期电力负荷预测
英文标题:Short-term Load Forecasting Based on Long Short-term Memory Network Combination Algorithm

作者:王子乐, 王子谋, 蔡莹, 谭晶, 黄弦超,

关键词:短期负荷预测, 互补集合经验模态分解, 长短时记忆神经网络, 贝叶斯优化, 多元线性回归,

发表日期:2023-04-10
2025-1-27 18:48 上传
文件大小:
3.8 MB
下载次数:
60
高速下载
【温馨提示】 您好!以下是下载说明,请您仔细阅读:
1、推荐使用360安全浏览器访问本站,选择您所需的PDF文档,点击页面下方“本地下载”按钮。
2、耐心等待两秒钟,系统将自动开始下载,本站文件均为高速下载。
3、下载完成后,请查看您浏览器的下载文件夹,找到对应的PDF文件。
4、使用PDF阅读器打开文档,开始阅读学习。
5、使用过程中遇到问题,请联系QQ客服。

本站提供的所有PDF文档、软件、资料等均为网友上传或网络收集,仅供学习和研究使用,不得用于任何商业用途。
本站尊重知识产权,若本站内容侵犯了您的权益,请及时通知我们,我们将尽快予以删除。
  • 手机访问
    微信扫一扫
  • 联系QQ客服
    QQ扫一扫
2022-2025 新资汇 - 参考资料免费下载网站 最近更新浙ICP备2024084428号
关灯 返回顶部
快速回复 返回顶部 返回列表