返回列表 发布新帖

[电工技术] 基于小波包分解与最小二乘支持向量机的用户侧净负荷预测

40 0
admin 发表于 2025-1-28 18:00 | 查看全部 阅读模式

基于小波包分解与最小二乘支持向量机的用户侧净负荷预测
摘要:随着分布式可再生能源在用户侧逐步接入,电表监测得到的用户净负荷曲线形态相对于原有实际负荷曲线更加不稳定,因而极大降低了用户的净负荷预测精度。针对此问题,提出基于小波包分解(wavelet packet decomposition,WPD)与最小二乘支持向量机(least squares support vector machine,LSSVM)的用户侧净负荷预测方法,通过对用户净负荷时序数据作小波包分解,得到信号特征更为明显的高频分量与低频趋势部分,筛选剔除波动性大、噪声信号多的高频细节分量。同时考虑气象因素,利用最小二乘支持向量机对小样本非线性信号的训练效率高、泛化能力强的特点,采用其模型对其余包含更多有效负荷数据信息的低频分量分别进行预测重构,叠加得到最终的净负荷预测值。通过对可再生能源高度渗透的某地区用户实际净负荷数据进行实例分析,结果表明所提预测方法在此物理场景下相比于传统预测方法有更高的预测精度。

Abstract:Along with the gradual grid-connection of distributed renewable energy at the user side, relative to original actual load curve the form of users’ net load curve monitored by electric meter becomes more unstable, so that the predicted accuracy of users’ net load is extremely decreased. For this reason, based on the wavelet packet decomposition (abbr. WPD) and least squares support vector machine (abbr. LSSVM) a method to predict user side net load was proposed. Through the WPD of users’ net load time series data the high frequency components and the low frequency trend with more evident signal features were obtained, and the high-frequency detail components, which evidently fluctuated and contained many noise signals, were screened and rejected. Meanwhile, considering meteorological factors and such characteristics of LSSVM as high training efficiency and strong generalization ability, the trained LSSVM model was used to respectively predict and reconstruct other low-frequency components containing more effective load data information, and then superposed them to obtain final predicted value of net load. Results of instance analysis on users’ actual net load data of a certain region with high penetration of renewable energy show that under such a physical scene a higher load prediction accuracy can be obtained than by traditional prediction method.

标题:基于小波包分解与最小二乘支持向量机的用户侧净负荷预测
英文标题:User-side Net Load Forecasting Based on Wavelet Packet Decomposition and Least Squares Support Vector Machine

作者:吴浩, 齐放, 张曦, 刘友波, 向月, 刘俊勇,

关键词:净负荷预测, 可再生能源, 小波包分解, 最小二乘支持向量机,

发表日期:2023-04-10
2025-1-27 18:48 上传
文件大小:
2.26 MB
下载次数:
60
高速下载
【温馨提示】 您好!以下是下载说明,请您仔细阅读:
1、推荐使用360安全浏览器访问本站,选择您所需的PDF文档,点击页面下方“本地下载”按钮。
2、耐心等待两秒钟,系统将自动开始下载,本站文件均为高速下载。
3、下载完成后,请查看您浏览器的下载文件夹,找到对应的PDF文件。
4、使用PDF阅读器打开文档,开始阅读学习。
5、使用过程中遇到问题,请联系QQ客服。

本站提供的所有PDF文档、软件、资料等均为网友上传或网络收集,仅供学习和研究使用,不得用于任何商业用途。
本站尊重知识产权,若本站内容侵犯了您的权益,请及时通知我们,我们将尽快予以删除。
  • 手机访问
    微信扫一扫
  • 联系QQ客服
    QQ扫一扫
2022-2025 新资汇 - 参考资料免费下载网站 最近更新浙ICP备2024084428号
关灯 返回顶部
快速回复 返回顶部 返回列表