返回列表 发布新帖

[电工技术] 基于状态频率记忆网络的家庭短期电力负荷预测

11 0
admin 发表于 2025-1-28 16:30 | 查看全部 阅读模式

基于状态频率记忆网络的家庭短期电力负荷预测
摘要:家庭的短期电力负荷预测在智能电网中发挥着越来越重要的作用,为了进一步提高预测的精度,提出了一种基于状态频率记忆网络的家庭短期电力负荷预测模型。首先采用K均值聚类方法,将具有相同用电模式的家庭归为一类;随后采用小波降噪技术对负荷数据进行降噪处理;最后构建状态频率记忆网络模型进行批量的家庭负荷预测。该模型通过引入离散傅里叶变换将记忆状态分解为多个频率分量,并通过这些频率成分的组合来预测未来的用电量。使用均方误差、均方根误差和平均绝对误差来评估模型,与该领域上性能表现最好的长短期记忆模型相比较,文中的模型在未来一天的负荷预测中,3类误差分别降低了21.6%、11.4%、15.4%,充分验证了模型的有效性。

Abstract:Short-term household power load forecasting has played an increasing important role in smart grid. To further improve the accuracy of the forecasting, a state frequency memory network-based short-term household power load forecasting model was proposed. Firstly, the k-means clustering method was utilized to classify the families possessing the same electricity consumption mode into the same category. Secondly, the wavelet denoising technology was applied to the load data. Finally, a state frequency memory network model was constructed to perform batch of household power load forecasting. In the proposed model, the discrete Fourier transform was led in to decompose the memory state into multi frequency components, and by means of the combination of these frequency components the future electricity consumption was forecasted. The mean square error (abbr. MSE) , root mean square error (abbr. RMSE) and mean absolute error (abbr. MAE) were used to evaluate the proposed model. Taking the load forecasting of the next day for example, comparing the results obtained by LSTM, which behaves the best in this field, with those obtained by the proposed model, the error of forecasted results of three kinds of household power load has reduced by 21.6%, 11.4% and 15.4% respectively, thus, the effectiveness of the proposed model is fully verified.

标题:基于状态频率记忆网络的家庭短期电力负荷预测
英文标题:Short-term Household Load Forecasting Based on State Frequency Memory Network

作者:卜祥国, 赖波, 周后盘,

关键词:电力负荷预测, 状态频率记忆网络, 小波降噪, K均值, 离散傅里叶变化,

发表日期:2023-01-16
2025-1-27 18:48 上传
文件大小:
2.3 MB
下载次数:
60
高速下载
【温馨提示】 您好!以下是下载说明,请您仔细阅读:
1、推荐使用360安全浏览器访问本站,选择您所需的PDF文档,点击页面下方“本地下载”按钮。
2、耐心等待两秒钟,系统将自动开始下载,本站文件均为高速下载。
3、下载完成后,请查看您浏览器的下载文件夹,找到对应的PDF文件。
4、使用PDF阅读器打开文档,开始阅读学习。
5、使用过程中遇到问题,请联系QQ客服。

本站提供的所有PDF文档、软件、资料等均为网友上传或网络收集,仅供学习和研究使用,不得用于任何商业用途。
本站尊重知识产权,若本站内容侵犯了您的权益,请及时通知我们,我们将尽快予以删除。
  • 手机访问
    微信扫一扫
  • 联系QQ客服
    QQ扫一扫
2022-2025 新资汇 - 参考资料免费下载网站 最近更新浙ICP备2024084428号
关灯 返回顶部
快速回复 返回顶部 返回列表