返回列表 发布新帖

[电工技术] 基于约束投票极限学习机的在线静态电压稳定评估

40 0
admin 发表于 2025-1-28 11:30 | 查看全部 阅读模式

基于约束投票极限学习机的在线静态电压稳定评估
摘要:快速准确的在线静态电压稳定评估是规模化互联电网安全稳定运行的重要保障。针对传统神经网络学习模型调参繁杂、训练时间长、样本需求数量庞大等缺点,提出了一种基于约束投票极限学习机(constrained voting extreme learning machine,CV-ELM)的在线静态电压稳定评估模型。CV-ELM基于类间样本差值构建差向量集计算输入层对隐藏层的权值及隐藏层节点偏置项,并引入多数投票机制,通过集成学习的方式进行分类决策。此外,CV-ELM可自适应确定网络参数,在分类准确率、鲁棒性及泛化能力方面均优于传统的ELM。最后,基于新英格兰10机39节点系统的算例仿真结果证明了所提模型的有效性。

Abstract:Rapid and accurate online static voltage stability assessment is important guarantee to ensure secure and stable operation of large-scale interconnected power grids. In allusion to such defects existing in traditional neural network learning model as many and diverse parameter invocation, long training time and large number of sample requirements, based on constrained voting extreme learning machine (abbr. CV-ELM) an online static voltage stability assessment model was proposed. Based on the sample differences among classes the difference vector set was constructed by CV-ELM to calculate the weights of the input layer to the hidden layer and the bias item of the hidden layer nodes, and the majority voting mechanism was led in to conduct the classification decision by ensemble learning. Furthermore, the network parameters could be determined by CV-ELM adaptively and in the aspects of the classification accuracy, robustness and generalization ability were better than those by traditional ELM. The effectiveness of the proposed model is proved by simulation results from the computing example based on New England 10-machine 39-bus system.

标题:基于约束投票极限学习机的在线静态电压稳定评估
英文标题:Online Static Voltage Stability Assessment Based on Constrained Voting Extreme Learning Machine

作者:汤迎春, 晏光辉, 张雅婷, 刘书池, 刘颂凯, 张磊,

关键词:静态电压稳定评估, 电压稳定裕度, 约束投票极限学习机, 集成学习, 机器学习,

发表日期:2022-10-10
2025-1-27 18:47 上传
文件大小:
2.38 MB
下载次数:
60
高速下载
【温馨提示】 您好!以下是下载说明,请您仔细阅读:
1、推荐使用360安全浏览器访问本站,选择您所需的PDF文档,点击页面下方“本地下载”按钮。
2、耐心等待两秒钟,系统将自动开始下载,本站文件均为高速下载。
3、下载完成后,请查看您浏览器的下载文件夹,找到对应的PDF文件。
4、使用PDF阅读器打开文档,开始阅读学习。
5、使用过程中遇到问题,请联系QQ客服。

本站提供的所有PDF文档、软件、资料等均为网友上传或网络收集,仅供学习和研究使用,不得用于任何商业用途。
本站尊重知识产权,若本站内容侵犯了您的权益,请及时通知我们,我们将尽快予以删除。
  • 手机访问
    微信扫一扫
  • 联系QQ客服
    QQ扫一扫
2022-2025 新资汇 - 参考资料免费下载网站 最近更新浙ICP备2024084428号
关灯 返回顶部
快速回复 返回顶部 返回列表