返回列表 发布新帖

[电工技术] 基于模型无关优化策略的风电短时回归预测框架设计

8 0
admin 发表于 2025-1-28 14:30 | 查看全部 阅读模式

基于模型无关优化策略的风电短时回归预测框架设计
摘要:目前,风电出力预测面临跨环境、跨传感器设备的多任务挑战,往往需要对不同的预测目标各自独立地展开针对性训练。鉴于此,首先提出了一种基于模型无关元学习策略 (model-agnostic meta-learning, MAML)的短期预测方法,并基于该方法能够实现对新任务样本快速适应的能力设计了新型回归训练框架。然后结合卷积神经网络–长短期记忆网络、有注意力机制的Seq2Seq、有自注意力机制的Transformer、Synthesizer等时序深度网络模型,将该框架应用于风力发电预测场景。实验结果表明相比常规的预训练–微调的深度网络训练方法,所提出的方法在GEFCom2012数据集上对各算例实现了均方根误差和均方误差等指标的提高,同时各模型在短时风电出力为案例的预测任务上的泛化性能获得了一定提升。该训练框架可便捷地将主流深度学习模型和数据集转换为适应MAML策略的匹配模式。

Abstract:At present, the wind power output prediction has to face with the multi-task challenges including cross environment and cross transducer equipment, so it often needs to conduct targeted training independently for different prediction targets. For this reason, firstly, a short-term prediction method based on model-agnostic meta-learning (abbr. MAML) was proposed. Secondly, based on the ability of the proposed method, by which the new task samples could be rapidly adapted, a new regression training framework was designed. Thirdly, combining with such sequential depth network models as the convolutional neural network-long and short term memory networks (abbr. CNN-LSTM), the Seq2Seq enhanced with the attention mechanism, the Transformer and Synthesizer enhanced with self-attention mechanism, this framework was applied to the wind power forecasting scene.  Experiment results show that comparing with conventional pre-training-fine-tuning deep network training method, the proposed method improves such indicators as root-mean-square error (RMSE) and mean square error (abbr. MSE) on the dataset GEFCom2012 for each computing example, meanwhile, the generalization performance of each model on the prediction task, which takes short-term wind power output as the case, obtains a certain improvement. Besides, this training framework can easily convert the mainstream deep learning regression model and its dataset to the matched pattern adapted to model-agnostic meta-learning (abbr. MAML) strategy .

标题:基于模型无关优化策略的风电短时回归预测框架设计
英文标题:A Regression Framework Design for Short Term Forecasting of  Wind Power  Based on Model-Agnostic Meta-Learning Strategy

作者:丁琦, 邱才明, 杨浩森, 童厚杰,

关键词:智能电网, 深度学习, 短时电力数据预测, 模型无关优化(MAML)策略,

发表日期:2022-06-10
2025-1-27 18:46 上传
文件大小:
2.51 MB
下载次数:
60
高速下载
【温馨提示】 您好!以下是下载说明,请您仔细阅读:
1、推荐使用360安全浏览器访问本站,选择您所需的PDF文档,点击页面下方“本地下载”按钮。
2、耐心等待两秒钟,系统将自动开始下载,本站文件均为高速下载。
3、下载完成后,请查看您浏览器的下载文件夹,找到对应的PDF文件。
4、使用PDF阅读器打开文档,开始阅读学习。
5、使用过程中遇到问题,请联系QQ客服。

本站提供的所有PDF文档、软件、资料等均为网友上传或网络收集,仅供学习和研究使用,不得用于任何商业用途。
本站尊重知识产权,若本站内容侵犯了您的权益,请及时通知我们,我们将尽快予以删除。
  • 手机访问
    微信扫一扫
  • 联系QQ客服
    QQ扫一扫
2022-2025 新资汇 - 参考资料免费下载网站 最近更新浙ICP备2024084428号
关灯 返回顶部
快速回复 返回顶部 返回列表