返回列表 发布新帖

[电工技术] 基于DBN和K-means聚类的配变重过载预警方法

9 0
admin 发表于 2025-1-27 13:00 | 查看全部 阅读模式

基于DBN和K-means聚类的配变重过载预警方法
摘要:针对配电变压器台区容量配置不合理、重过载现象频繁发生等带来的小样本精确预测问题,提出了一种新的配电变压器重过载预警方法。首先建立满足大数据样本学习要求的扩充样本池;采集配电变压器负荷数据、社会发展统计数据、气象数据等,选取造成重过载的输入特征变量,聚合形成精选的特征数据样本;进而构建重过载预警深度信念网络学习模型,通过分析重过载配变发展态势,短、中期预测预警,选取年负荷曲线进行K-means聚类分析,形成重过载预警清单,实现配电变压器安全隐患的预判。可解决配电变压器采样系统投运时间短训练样本数据不充足问题,实现对重过载配电变压器的风险防范和容量的优化调整。通过算例验证了模型预测的有效性。

Abstract:In allusion to the defect in the small sample exact prediction brought by unreasonable allocation distribution transformer capacity as well as frequent heavy overload, a new early warning method for heavy overloaded distribution transformers was proposed. Firstly, an extended sample pool was formed to meet the learning requirement of large data samples. Secondly, by means of collecting load data of distribution transformers, social development and statistical data and meteorological data, the input characteristic variables that might impact heavy overload were rough selected, then aggregating them to form well-chosen feature data samples. And then, a deep belief network learning model for heavy overload early warning was constructed to analyze the development trend of heavy overloaded distribution transformers, and by means of early warning of short- and medium-term prediction and selecting annual load curve the K-means cluster analysis was performed to form heavy overload early warning list to implement the pre-judgment of the potential dangers of heavy overloaded distribution transformers. The proposed method could cope with the insufficient training sample data caused by the short operation time of the sampling system, the risk prevention of heavy overloaded distribution transformer as well as the optimization and adjustment of distribution transformers’ capacity could be realized. The early warning performance and the effectiveness of the proposed method are verified by calculation example.

标题:基于DBN和K-means聚类的配变重过载预警方法
英文标题:Overload Warning for Distribution Transformer Based on DBN and K-means

作者:童光华, 董亮, 任永平, 于金平, 冉新涛,

关键词:深度信念网络, 配变容量, 重过载, K-means聚类, 预警,

发表日期:2021-10-10
2025-1-26 20:54 上传
文件大小:
2.66 MB
下载次数:
60
高速下载
【温馨提示】 您好!以下是下载说明,请您仔细阅读:
1、推荐使用360安全浏览器访问本站,选择您所需的PDF文档,点击页面下方“本地下载”按钮。
2、耐心等待两秒钟,系统将自动开始下载,本站文件均为高速下载。
3、下载完成后,请查看您浏览器的下载文件夹,找到对应的PDF文件。
4、使用PDF阅读器打开文档,开始阅读学习。
5、使用过程中遇到问题,请联系QQ客服。

本站提供的所有PDF文档、软件、资料等均为网友上传或网络收集,仅供学习和研究使用,不得用于任何商业用途。
本站尊重知识产权,若本站内容侵犯了您的权益,请及时通知我们,我们将尽快予以删除。
  • 手机访问
    微信扫一扫
  • 联系QQ客服
    QQ扫一扫
2022-2025 新资汇 - 参考资料免费下载网站 最近更新浙ICP备2024084428号
关灯 返回顶部
快速回复 返回顶部 返回列表