返回列表 发布新帖

[电工技术] 基于随差遗忘长短期记忆的风电功率实时预测

8 0
admin 发表于 2025-1-27 12:30 | 查看全部 阅读模式

基于随差遗忘长短期记忆的风电功率实时预测
摘要:由于标准长短期记忆(long short-term memory, LSTM)遗忘门更新方式不能实时反映预测误差对模型预测的修正作用,提出随差遗忘长短期记忆(Error Following Forget Gate-based LSTM, EFFG-based LSTM)的风电功率实时预测模型。用上一时刻的风电功率预测值与实际值的误差来更新遗忘门,从而降低上一时刻预测误差对此时风电功率预测精度的影响,提升风电功率滚动预测精度,并采用某实际风电场的历史风电功率数据和数值预报气象数据进行了验证,结果表明:基于EFFG-based LSTM网络风电功率实时预测模型预测值的均方根误差小于3%,满足系统调度相关要求;准确率、合格率达到90%以上,比基于支持向量机和标准LSTM模型具有更高的预测精度。

Abstract:Because of the fact that the update mode of the forget gate of standard long short-term memory (abbr. LSTM) could not reflect the correction of predicated error to the model based prediction value in real time, a real-time wind power prediction model utilizing error following forget gate (abbr. EFFG)-based LSTM was proposed. The error between the predicted value of wind power and the actual value at the previous moment was used to update the forget gate, thus the influence of the predicted error of the wind power at the previous moment on the prediction accuracy at current moment could be reduced, and the rolling prediction accuracy of wind power could be improved. The historical wind power data of a certain actual wind farm and the numerical forecasted meteorological data were utilized to verify the proposed model. Verification results show that the root-mean-square error of the value predicted by the proposed real-time wind power prediction model based on EFFG-based LSTM is less than 3%, and both accuracy and acceptability reach more than 90%, thus such results are better than the prediction accuracy by the models based on support vector machine and standard LSTM model.

标题:基于随差遗忘长短期记忆的风电功率实时预测
英文标题:Real-time Prediction of Wind Power Based on Error Following Forget Gate-based Long Short-term Memory

作者:李春平, 张沛, 彭春华, 尹瑞, 时珉,

关键词:风电功率, 实时预测, 时间序列, 随差遗忘长短期记忆,

发表日期:2021-02-07
2025-1-26 20:53 上传
文件大小:
994.79 KB
下载次数:
60
高速下载
【温馨提示】 您好!以下是下载说明,请您仔细阅读:
1、推荐使用360安全浏览器访问本站,选择您所需的PDF文档,点击页面下方“本地下载”按钮。
2、耐心等待两秒钟,系统将自动开始下载,本站文件均为高速下载。
3、下载完成后,请查看您浏览器的下载文件夹,找到对应的PDF文件。
4、使用PDF阅读器打开文档,开始阅读学习。
5、使用过程中遇到问题,请联系QQ客服。

本站提供的所有PDF文档、软件、资料等均为网友上传或网络收集,仅供学习和研究使用,不得用于任何商业用途。
本站尊重知识产权,若本站内容侵犯了您的权益,请及时通知我们,我们将尽快予以删除。
  • 手机访问
    微信扫一扫
  • 联系QQ客服
    QQ扫一扫
2022-2025 新资汇 - 参考资料免费下载网站 最近更新浙ICP备2024084428号
关灯 返回顶部
快速回复 返回顶部 返回列表