返回列表 发布新帖

[电工技术] 基于方差变化率判据-四分位的风电场功率异常数据识别

7 0
admin 发表于 2025-1-24 17:30 | 查看全部 阅读模式

基于方差变化率判据-四分位的风电场功率异常数据识别
风电场运行中产生了数量巨大的历史数据,而提升历史数据的质量是实现风电场高效智能运维的前提。为此,文中分析了风电场风功率数据的分布特征和形成机理,提出基于方差变化率判据-四分位法组合的风电场风功率异常数据识别方法。首先,利用物理规则对原始风功率曲线进行预处理,剔除明显异常的数据;然后,利用风功率方差变化率判据法识别并清洗风功率曲线的堆积型异常功率数据点,判据的阈值借助箱型图自动获取;同时,利用四分位法识别并清洗剩余的离散型异常数据点;最后,通过算例验证了所提算法的可行性。研究结果表明所提算法具有易实现、效率高和通用性强的优点,其异常识别效果优于局部离群因子(local outlier factor,LOF)算法和Thompson tau-四分位算法,其耗时比LOF和Thompson tau-四分位算法分别减少9.6 s和0.49 s,且在5个不同位置的风电场验证了所提算法的通用性。

标题:
基于方差变化率判据-四分位的风电场功率异常数据识别
Anomaly data identification of wind power in wind farm with the criterion of variance change rate and quartile

作者:
吴永斌,张建忠,邓富金,黄树帮
WU Yongbin, ZHANG Jianzhong, DENG Fujin, HUANG Shubang

关键词:
风电场;风功率数据;异常识别;方差变化率判据;四分位;智能运维
wind farm;wind power data;anomaly identification;variance change rate criterion;quartile;intelligent operation and maintenance
2025-1-23 19:59 上传
文件大小:
13.47 MB
下载次数:
60
高速下载
【温馨提示】 您好!以下是下载说明,请您仔细阅读:
1、推荐使用360安全浏览器访问本站,选择您所需的PDF文档,点击页面下方“本地下载”按钮。
2、耐心等待两秒钟,系统将自动开始下载,本站文件均为高速下载。
3、下载完成后,请查看您浏览器的下载文件夹,找到对应的PDF文件。
4、使用PDF阅读器打开文档,开始阅读学习。
5、使用过程中遇到问题,请联系QQ客服。

本站提供的所有PDF文档、软件、资料等均为网友上传或网络收集,仅供学习和研究使用,不得用于任何商业用途。
本站尊重知识产权,若本站内容侵犯了您的权益,请及时通知我们,我们将尽快予以删除。
  • 手机访问
    微信扫一扫
  • 联系QQ客服
    QQ扫一扫
2022-2025 新资汇 - 参考资料免费下载网站 最近更新浙ICP备2024084428号
关灯 返回顶部
快速回复 返回顶部 返回列表