返回列表 发布新帖

[电工技术] 考虑数据不均衡的居民用户负荷曲线分类方法

7 0
admin 发表于 2025-1-24 15:30 | 查看全部 阅读模式

考虑数据不均衡的居民用户负荷曲线分类方法
由于用户用电行为的多样性和随机性,负荷数据存在分布不均衡的问题,传统负荷曲线分类方法在处理不均衡数据时性能较差。为此,提出一种改进K-means与长短期记忆(LSTM)神经网络-卷积神经网络(CNN)分类模型结合的负荷曲线分类方法。首先,为提升K-means算法对不均衡数据的聚类效果,基于密度峰值聚类(DPC)算法思想,提出一种相对k近邻密度峰值(RKDP)初始聚类中心选取方法,将其作为K-means算法的初始中心进行聚类;然后,为提高RKDP-K-means处理高维负荷数据的性能,采用LSTM自编码器进行特征降维后再聚类获得精准类别标签;最后,基于LSTM神经网络和CNN分别提取负荷特征构建负荷曲线分类模型,实现对大规模负荷曲线的分类。算例选取了爱尔兰智能电表数据集和伦敦负荷数据集进行实验,验证了所提算法在大规模负荷曲线分类时的有效性和实用性。

标题:
考虑数据不均衡的居民用户负荷曲线分类方法
Residential user load curve classification method considering data imbalance

作者:
张慧波,王守相,赵倩宇,任杰,王海
ZHANG Huibo, WANG Shouxiang, ZHAO Qianyu, REN Jie, WANG Hai

关键词:
负荷曲线分类;不均衡数据;改进K-means;自编码器;长短期记忆(LSTM)神经网络;卷积神经网络(CNN)
load curve classification;imbalanced data;improved K-means;auto-encoder;long short term memory (LSTM) neural network;convolutional neural network (CNN)
2025-1-23 19:53 上传
文件大小:
1.48 MB
下载次数:
60
高速下载
【温馨提示】 您好!以下是下载说明,请您仔细阅读:
1、推荐使用360安全浏览器访问本站,选择您所需的PDF文档,点击页面下方“本地下载”按钮。
2、耐心等待两秒钟,系统将自动开始下载,本站文件均为高速下载。
3、下载完成后,请查看您浏览器的下载文件夹,找到对应的PDF文件。
4、使用PDF阅读器打开文档,开始阅读学习。
5、使用过程中遇到问题,请联系QQ客服。

本站提供的所有PDF文档、软件、资料等均为网友上传或网络收集,仅供学习和研究使用,不得用于任何商业用途。
本站尊重知识产权,若本站内容侵犯了您的权益,请及时通知我们,我们将尽快予以删除。
  • 手机访问
    微信扫一扫
  • 联系QQ客服
    QQ扫一扫
2022-2025 新资汇 - 参考资料免费下载网站 最近更新浙ICP备2024084428号
关灯 返回顶部
快速回复 返回顶部 返回列表