返回列表 发布新帖

[电工技术] 基于改进Faster-RCNN的输电线路巡检图像检测

4 0
admin 发表于 2025-1-24 09:30 | 查看全部 阅读模式

基于改进Faster-RCNN的输电线路巡检图像检测
针对传统输电线路目标巡检图像识别方法响应速度慢、准确率不高的问题,文中提出一种改进的更快速区域卷积神经网络(Faster-RCNN)深度学习识别算法。通过轻量化卷积神经网络(ZFnet)提取图像特征,并重置模型参数以获取更多目标细节;利用Faster-RCNN对目标进行检测,由子网络区域提议模型生成目标候选框和快速区域卷积神经网络(Fast-RCNN)进行参数调优,并在Faster-RCNN输出部分引入精炼阶段,增加目标特征的分类细化和回归细化,将存在目标的多个边界框合并,实现精确分类以及坐标定位。实验结果表明:改进Faster-RCNN算法可有效识别线路设备及设备缺陷,总体识别率达到93.5%,响应时间在1 s内。与图像识别法或单步多阶目标检测(SSD)、实时快速目标检测(YOLO)深度学习法相比,所提算法提高了电力设备的识别精度与响应速度,在输电线路智能巡检中具有一定的优越性。

标题:
基于改进Faster-RCNN的输电线路巡检图像检测
Transmission line inspection image detection based on improved Faster-RCNN

作者:
魏业文,李梅,解园琳,戴北城
WEI Yewen, LI Mei, XIE Yuanlin, DAI Beicheng

关键词:
输电线路巡检;图像识别;深度学习;卷积神经网络;特征提取;区域提议网络
transmission line inspection;image recognition;deep learning;convolutional neural network;feature extraction;re-gion proposal network
2025-1-23 19:52 上传
文件大小:
8.96 MB
下载次数:
60
高速下载
【温馨提示】 您好!以下是下载说明,请您仔细阅读:
1、推荐使用360安全浏览器访问本站,选择您所需的PDF文档,点击页面下方“本地下载”按钮。
2、耐心等待两秒钟,系统将自动开始下载,本站文件均为高速下载。
3、下载完成后,请查看您浏览器的下载文件夹,找到对应的PDF文件。
4、使用PDF阅读器打开文档,开始阅读学习。
5、使用过程中遇到问题,请联系QQ客服。

本站提供的所有PDF文档、软件、资料等均为网友上传或网络收集,仅供学习和研究使用,不得用于任何商业用途。
本站尊重知识产权,若本站内容侵犯了您的权益,请及时通知我们,我们将尽快予以删除。
  • 手机访问
    微信扫一扫
  • 联系QQ客服
    QQ扫一扫
2022-2025 新资汇 - 参考资料免费下载网站 最近更新浙ICP备2024084428号
关灯 返回顶部
快速回复 返回顶部 返回列表