返回列表 发布新帖

[电工技术] 基于深度强化学习的充光储能源站调度策略

14 0
admin 发表于 2025-1-24 17:00 | 查看全部 阅读模式

基于深度强化学习的充光储能源站调度策略
为了应对大规模电动汽车调度模型求解复杂、算力要求高的问题,机器学习方法在电动汽车充电导航调度中越来越受到关注。针对充光储一体化能源站,文中提出了一种基于深度强化学习(DRL)的充光储能源站调度策略。首先,分析了能源站运行策略与DRL基本理论。其次,基于后悔理论刻画用户对不同充电方案时间与费用的心理状态,建立了智能体对"人-车-站"状态环境全感知模型,并引入时变ε-greedy策略作为智能体动作选择方法以提高算法收敛速度。最后,结合南京市实际道路与能源站分布设计了多场景算例仿真,结果表明所提方法在考虑用户心理效应的基础上能够有效提高能源站光伏消纳率,为电动汽车充电调度提供了一种新思路。

标题:
基于深度强化学习的充光储能源站调度策略
A deep reinforcement learning-based scheduling strategy of photovoltaic-storage-charging integrated energy stations

作者:
孙广明,陈良亮,王瑞升,陈中,邢强
SUN Guangming, CHEN Liangliang, WANG Ruisheng, CHEN Zhong, XING Qiang

关键词:
电动汽车;充光储能源站;充电调度;深度强化学习;后悔理论;全感知模型
electric vehicle;photovoltaic-storage-charging integrated energy station;charging scheduling;deep reinforcement learning;regret theory;full perception model
2025-1-23 19:50 上传
文件大小:
8.56 MB
下载次数:
60
高速下载
【温馨提示】 您好!以下是下载说明,请您仔细阅读:
1、推荐使用360安全浏览器访问本站,选择您所需的PDF文档,点击页面下方“本地下载”按钮。
2、耐心等待两秒钟,系统将自动开始下载,本站文件均为高速下载。
3、下载完成后,请查看您浏览器的下载文件夹,找到对应的PDF文件。
4、使用PDF阅读器打开文档,开始阅读学习。
5、使用过程中遇到问题,请联系QQ客服。

本站提供的所有PDF文档、软件、资料等均为网友上传或网络收集,仅供学习和研究使用,不得用于任何商业用途。
本站尊重知识产权,若本站内容侵犯了您的权益,请及时通知我们,我们将尽快予以删除。
  • 手机访问
    微信扫一扫
  • 联系QQ客服
    QQ扫一扫
2022-2025 新资汇 - 参考资料免费下载网站 最近更新浙ICP备2024084428号
关灯 返回顶部
快速回复 返回顶部 返回列表