返回列表 发布新帖

[电工技术] 基于贝叶斯优化XGBoost的短期峰值负荷预测

13 0
admin 发表于 2025-1-24 17:30 | 查看全部 阅读模式

基于贝叶斯优化XGBoost的短期峰值负荷预测
随着电网结构愈发复杂,负荷的多样性与波动性显著增加,对预测模型提出了更高的泛化能力和精度要求。然而,传统算法存在易过拟合、精度低等固有缺陷,难以实现复杂电网下精准的尖峰负荷预测。为此,文中提出一种基于贝叶斯优化极限梯度提升(XGBoost)的模型用于短期峰值负荷预测。首先,通过特征重要度得分进行特征提取,剔除冗余特征,确保输入-输出有较优的映射关系;然后,引入贝叶斯优化算法进行超参数调优,使XGBoost的性能达到最佳状态;最后,使用国内某市电力负荷数据对所提模型的有效性进行验证,结果表明,与其他机器学习方法相比,贝叶斯优化XGBoost具有更高的预测精度。

标题:
基于贝叶斯优化XGBoost的短期峰值负荷预测
Short-term peak load forecasting based on Bayesian optimization XGBoost

作者:
龚雪娇,朱瑞金,唐波
GONG Xuejiao, ZHU Ruijin, TANG Bo

关键词:
贝叶斯优化;极限梯度提升(XGBoost);峰值负荷;负荷预测;超参数
Bayesian optimization;extreme gradient boosting(XGBoost);peak load;load prediction;hyper-parameter
2025-1-23 19:42 上传
文件大小:
7.05 MB
下载次数:
60
高速下载
【温馨提示】 您好!以下是下载说明,请您仔细阅读:
1、推荐使用360安全浏览器访问本站,选择您所需的PDF文档,点击页面下方“本地下载”按钮。
2、耐心等待两秒钟,系统将自动开始下载,本站文件均为高速下载。
3、下载完成后,请查看您浏览器的下载文件夹,找到对应的PDF文件。
4、使用PDF阅读器打开文档,开始阅读学习。
5、使用过程中遇到问题,请联系QQ客服。

本站提供的所有PDF文档、软件、资料等均为网友上传或网络收集,仅供学习和研究使用,不得用于任何商业用途。
本站尊重知识产权,若本站内容侵犯了您的权益,请及时通知我们,我们将尽快予以删除。
  • 手机访问
    微信扫一扫
  • 联系QQ客服
    QQ扫一扫
2022-2025 新资汇 - 参考资料免费下载网站 最近更新浙ICP备2024084428号
关灯 返回顶部
快速回复 返回顶部 返回列表