返回列表 发布新帖

[电工技术] 基于RBF神经网络的智能负载控制策略研究

6 0
admin 发表于 2025-1-24 15:00 | 查看全部 阅读模式

基于RBF神经网络的智能负载控制策略研究
传统用于电力弹簧(ES)控制的PI控制器调节性能较差,且控制方法中未考虑非关键负载突然变化的问题,为解决该问题,根据ES的数学模型和控制电路提出了一种基于径向基函数(RBF)神经网络的智能负载控制方法。利用RBF神经网络算法弥补传统PI控制器参数固定即无法更改的缺点,通过对控制器参数的实时在线调整来减少智能负载失稳情况,确保系统母线电压稳定。在Matlab/Simulink仿真环境中进行仿真验证,结果表明,与传统PI控制相比,文中所提控制策略下的智能负载对关键负载两端电压的调节性能更优。因此,在基于RBF神经网络的PI新型控制策略下的智能负载具有更好的鲁棒性和系统控制能力。

标题:
基于RBF神经网络的智能负载控制策略研究
Intelligent load control strategy based on RBF neural network

作者:
叶泰然,王婷,吕捷,吴薛红,周杨,马刚
YE Tairan, WANG Ting, LYU Jie, WU Xuehong, ZHOU Yang, MA Gang

关键词:
智能负载;径向基函数(RBF)神经网络算法;电压控制;PI控制器;电力弹簧
intelligent load;radial basis function(RBF) neural network algorithm;voltage control;PI controller;electric springs
2025-1-23 19:41 上传
文件大小:
5.97 MB
下载次数:
60
高速下载
【温馨提示】 您好!以下是下载说明,请您仔细阅读:
1、推荐使用360安全浏览器访问本站,选择您所需的PDF文档,点击页面下方“本地下载”按钮。
2、耐心等待两秒钟,系统将自动开始下载,本站文件均为高速下载。
3、下载完成后,请查看您浏览器的下载文件夹,找到对应的PDF文件。
4、使用PDF阅读器打开文档,开始阅读学习。
5、使用过程中遇到问题,请联系QQ客服。

本站提供的所有PDF文档、软件、资料等均为网友上传或网络收集,仅供学习和研究使用,不得用于任何商业用途。
本站尊重知识产权,若本站内容侵犯了您的权益,请及时通知我们,我们将尽快予以删除。
  • 手机访问
    微信扫一扫
  • 联系QQ客服
    QQ扫一扫
2022-2025 新资汇 - 参考资料免费下载网站 最近更新浙ICP备2024084428号
关灯 返回顶部
快速回复 返回顶部 返回列表