返回列表 发布新帖

[能源与动力工程] 基于TensorFlow框架的有源配电网深度学习故障定位方法

6 0
admin 发表于 2025-1-23 16:30 | 查看全部 阅读模式

基于TensorFlow框架的有源配电网深度学习故障定位方法
随着大规模分布式电源(DG)接入配电网,配电网的结构由传统的辐射型变为多端电源结构,传统的故障定位方法不再完全满足含DG的配电网系统,对此提出一种基于深度学习的有源配电网故障定位方法。首先通过馈线监控终端采集过电流故障数据与节点电压数据,结合各电源出力数据,形成故障数据向量;然后使用Tensorflow构建基于全连接网络的深度神经网络模型,挖掘故障数据向量与故障支路之间的映射联系,形成故障定位模型;最后利用该模型在线定位故障并验证其有效性。模型测试结果表示,与反向传播神经网络、学习向量量化神经网络模型相比,深度学习模型收敛速度更快,故障定位准确率更高,同时在数据畸变或缺失时,模型具有较高的容错性。

标题:
基于TensorFlow框架的有源配电网深度学习故障定位方法
A fault location method for active distribution network based on Tensorflow deep learning

作者:
刘成民,戴中坚,陈轩
LIU Chengming, DAI Zhongjian, CHEN Xuan

关键词:
Tensorflow;分布式电源;配电网;深度学习;故障定位
Tensorflow;distributed generation;distribution network;deep learning;fault location
2025-1-22 20:09 上传
文件大小:
1.54 MB
下载次数:
60
高速下载
【温馨提示】 您好!以下是下载说明,请您仔细阅读:
1、推荐使用360安全浏览器访问本站,选择您所需的PDF文档,点击页面下方“本地下载”按钮。
2、耐心等待两秒钟,系统将自动开始下载,本站文件均为高速下载。
3、下载完成后,请查看您浏览器的下载文件夹,找到对应的PDF文件。
4、使用PDF阅读器打开文档,开始阅读学习。
5、使用过程中遇到问题,请联系QQ客服。

本站提供的所有PDF文档、软件、资料等均为网友上传或网络收集,仅供学习和研究使用,不得用于任何商业用途。
本站尊重知识产权,若本站内容侵犯了您的权益,请及时通知我们,我们将尽快予以删除。
  • 手机访问
    微信扫一扫
  • 联系QQ客服
    QQ扫一扫
2022-2025 新资汇 - 参考资料免费下载网站 最近更新浙ICP备2024084428号
关灯 返回顶部
快速回复 返回顶部 返回列表