返回列表 发布新帖

[能源与动力工程] 基于MIV-PCA的超短期风电功率预测模型优化

5 0
admin 发表于 2025-1-23 08:30 | 查看全部 阅读模式

基于MIV-PCA的超短期风电功率预测模型优化
为解决基于动态神经网络的超短期风电功率预测方法中预测模型输入变量多、模型复杂等问题,文中将平均影响值(MIV)和主元分析(PCA)方法相结合,对预测模型进行了优化。MIV方法表征了输入变量对输出的影响程度,可筛选出对预测输出具有最大影响的输入变量,简化预测模型,但变量的信息利用率不高。PCA法从剩余的输入变量中提取出主元,通过增加少量的主元变量提高信息利用率,弥补MIV方法的不足。数据分析及实验结果表明,通过MIV和PCA法优化的预测模型的输入变量能在获得较高的累计贡献率的同时降低模型复杂度,保留原系统的重要信息,并降低模型引入噪声的风险,使得风电功率预测精度得到显著提高。

标题:
基于MIV-PCA的超短期风电功率预测模型优化
Optimization of ultra-short-term wind power predicting model based on MIV-PCA

作者:
徐龙博,王伟,丁煜函,张滔,汪少勇
XU Longbo, WANG Wei, DING Yuhan, ZHANG Tao, WANG Shaoyong

关键词:
风电功率;超短期预测;平均值影响;主元分析;模型优化
wind power;ultra-short-term prediction;mean impact value;principal component analysis;model optimization
2025-1-22 20:09 上传
文件大小:
1.43 MB
下载次数:
60
高速下载
【温馨提示】 您好!以下是下载说明,请您仔细阅读:
1、推荐使用360安全浏览器访问本站,选择您所需的PDF文档,点击页面下方“本地下载”按钮。
2、耐心等待两秒钟,系统将自动开始下载,本站文件均为高速下载。
3、下载完成后,请查看您浏览器的下载文件夹,找到对应的PDF文件。
4、使用PDF阅读器打开文档,开始阅读学习。
5、使用过程中遇到问题,请联系QQ客服。

本站提供的所有PDF文档、软件、资料等均为网友上传或网络收集,仅供学习和研究使用,不得用于任何商业用途。
本站尊重知识产权,若本站内容侵犯了您的权益,请及时通知我们,我们将尽快予以删除。
  • 手机访问
    微信扫一扫
  • 联系QQ客服
    QQ扫一扫
2022-2025 新资汇 - 参考资料免费下载网站 最近更新浙ICP备2024084428号
关灯 返回顶部
快速回复 返回顶部 返回列表