返回列表 发布新帖

[能源与动力工程] 基于RetinaNet和类别平衡采样方法的销钉缺陷检测

6 0
admin 发表于 2025-1-23 11:30 | 查看全部 阅读模式

基于RetinaNet和类别平衡采样方法的销钉缺陷检测
传统的无人机巡检航拍图中的电力连接金具销钉缺陷检测依赖人工进行标注,针对此问题,借助深度学习缺陷检测算法RetinaNet自动提取正常、缺陷样本的特征,完成低层特征和顶层特征的融合,实现销钉缺陷的自动标注。考虑到现实情况中缺陷类别样本数量远少于正常类别样本数量,首先分析了缺陷数据不足引起的类别失衡对识别结果的影响,结果表明该情况下训练好的模型将会使得大量缺陷样本被错误地识别为正常类。于是,在数据层面采用类别平衡采样方法,确保每个类别参与训练的机会均衡,实验结果表明,所提的方法能够在维持销钉正常类的高识别率前提下,明显提高缺陷类别的平均准确率。

标题:
基于RetinaNet和类别平衡采样方法的销钉缺陷检测
Defect detection of pins based on RetinaNet and class balanced sampling methods

作者:
王凯,王健,刘刚,周文青,陈佳
WANG Kai, WANG Jian, LIU Gang, ZHOU Wenqing, CHEN Jia

关键词:
深度学习;类别失衡;类别平衡采样;平均准确率
deep learning;category imbalance;class balanced sampling;average precision
【温馨提示】 您好!以下是下载说明,请您仔细阅读:
1、推荐使用360安全浏览器访问本站,选择您所需的PDF文档,点击页面下方“本地下载”按钮。
2、耐心等待两秒钟,系统将自动开始下载,本站文件均为高速下载。
3、下载完成后,请查看您浏览器的下载文件夹,找到对应的PDF文件。
4、使用PDF阅读器打开文档,开始阅读学习。
5、使用过程中遇到问题,请联系QQ客服。

本站提供的所有PDF文档、软件、资料等均为网友上传或网络收集,仅供学习和研究使用,不得用于任何商业用途。
本站尊重知识产权,若本站内容侵犯了您的权益,请及时通知我们,我们将尽快予以删除。
  • 手机访问
    微信扫一扫
  • 联系QQ客服
    QQ扫一扫
2022-2025 新资汇 - 参考资料免费下载网站 最近更新浙ICP备2024084428号
关灯 返回顶部
快速回复 返回顶部 返回列表