返回列表 发布新帖

[能源与动力工程] 基于SVMD-BO-BiTCN的超短期光伏发电功率预测

16 0
admin 发表于 2025-1-22 16:00 | 查看全部 阅读模式

基于SVMD-BO-BiTCN的超短期光伏发电功率预测
摘要:光照的间歇性使光伏发电功率波动性较大,导致光伏发电功率的预测准确率较低。为此,提出一种基于连续变分模态分解(successive variational mode decomposition,SVMD)、贝叶斯优化(Bayesian optimization,BO)算法和双向时序卷积网络(bidirectional temporal convolutional network, BiTCN)的超短期光伏发电功率预测模型,以提高预测精度。首先,通过SVMD将原始光伏发电功率分解为多个功率分量和功率残差,以获得多个波动性小的序列;然后,使用改进的BiTCN代替单向时序卷积网络(temporal convolutional network,TCN),完成低耗时下SVMD分解结果的双向特征提取与预测;之后,使用BO算法高效寻找BiTCN超参数,从而提高BiTCN对各功率分量和功率残差的预测精度;最后,求和并重构预测结果,实现超短期光伏发电功率预测。实验证明,该模型与单一的TCN模型相比,均方根误差(root mean square error,RMSE)减小了35.18%,决定系数提升了4.82%。

Abstract:Intermittent sunlight leads to significant fluctuations in photovoltaic power generation, resulting in low accuracy in predicting the power output. In this study, a new ultra-short-term photovoltaic power generation forecasting model based on successive variational mode decomposition (SVMD), Bayesian optimization (BO) algorithm, and bidirectional temporal convolutional network (BiTCN) is proposed to improve prediction accuracy. Initially, the raw photovoltaic power generation data is decomposed into multiple power components and a power residual using SVMD to obtain multiple sequences with small fluctuations. Subsequently, the improved BiTCN replaces the temporal convolutional network (TCN) to perform bidirectional feature extraction and prediction of the SVMD decomposition results with low latency. Then, BO algorithm is used to search for BiTCN hyperparameters efficiently, so as to improve the prediction accuracy of each power component and power residual. Finally, the predicted results are summed and reconstructed to achieve ultra-short-term photovoltaic power generation prediction. Experiments demonstrate that the proposed model achieves a 35.18% reduction in root mean square error (RMSE) and a 4.82% increase in coefficient of determination compared to the single TCN model.

标题:基于SVMD-BO-BiTCN的超短期光伏发电功率预测
title:Ultra-Short-Term Photovoltaic Power Prediction Based on SVMD-BO-BiTCN

作者:何瑨麟,郝建新,苏成飞,屠壮壮
authors:HE Jinlin,HAO Jianxin,SU Chengfei,TU Zhuangzhuang

关键词:光伏发电,发电功率预测,深度学习模型,连续变分模态分解(SVMD),
keywords:photovoltaic power generation,prediction of generating power,deep learning model,successive variational mode decomposition (SVMD),

发表日期:2024-11-26
2025-1-21 20:18 上传
文件大小:
2.6 MB
下载次数:
60
高速下载
【温馨提示】 您好!以下是下载说明,请您仔细阅读:
1、推荐使用360安全浏览器访问本站,选择您所需的PDF文档,点击页面下方“本地下载”按钮。
2、耐心等待两秒钟,系统将自动开始下载,本站文件均为高速下载。
3、下载完成后,请查看您浏览器的下载文件夹,找到对应的PDF文件。
4、使用PDF阅读器打开文档,开始阅读学习。
5、使用过程中遇到问题,请联系QQ客服。

本站提供的所有PDF文档、软件、资料等均为网友上传或网络收集,仅供学习和研究使用,不得用于任何商业用途。
本站尊重知识产权,若本站内容侵犯了您的权益,请及时通知我们,我们将尽快予以删除。
  • 手机访问
    微信扫一扫
  • 联系QQ客服
    QQ扫一扫
2022-2025 新资汇 - 参考资料免费下载网站 最近更新浙ICP备2024084428号
关灯 返回顶部
快速回复 返回顶部 返回列表