返回列表 发布新帖

[能源与动力工程] 基于PCA-SOA-ELM的空调系统负荷预测

5 0
admin 发表于 2025-1-22 10:30 | 查看全部 阅读模式

基于PCA-SOA-ELM的空调系统负荷预测
摘要:针对参与需求响应的空调系统负荷预测方法存在预测精度低、预测时间长等问题,提出一种基于主成分分析(principal component analysis, PCA)与海鸥优化算法(seagull optimization algorithm,SOA)优化极限学习机(extreme learning machine, ELM)空调负荷预测模型。通过PCA提取影响空调系统负荷数据的主要特征,建立空调系统ELM负荷预测模型,并采用SOA对模型参数进行迭代寻优。为了验证算法的有效性,以某办公建筑的空调负荷数据为例进行实例分析,实验结果表明:经PCA特征提取后得到包含98.00%原信息的6项主成分,SOA-ELM模型的预测结果与实际值基本吻合,其均方根误差为0.0137,平均绝对百分比误差为0.8392%,决定系数高达0.9910,训练时长为3.482s,相较于其他3种对比模型性能更优。证明了所建模型泛化性能强、预测精度高,能够有效预测空调系统需求响应时段负荷的变化情况。

Abstract:Aiming at the problems of low prediction accuracy and long prediction time in the load forecasting method of air conditioning system participating in demand response, an air conditioning load forecasting model based on extreme learning machine (ELM) optimized by principal component analysis (PCA) and seagull optimization algorithm (SOA) is proposed. The main characteristics affecting the load data of air conditioning system are extracted through PCA, the ELM load forecasting model of air conditioning system is established, and the model parameters are iteratively optimized by SOA. In order to verify the effectiveness of the algorithm, taking the air conditioning load data of an office building in Xi'an as an example, the experimental results show that six principal components containing 98.00% of the original information are obtained after PCA feature extraction. The prediction results of SOA-ELM model are basically consistent with the actual values, with root mean square error of 0.013 7, average absolute percentage error of 0.839 2%, determination coefficient of 0.991 0 and training time of 3.482 s. Compared with the other three comparison models, the performance of the model is better. It is proved that the model has strong generalization performance and high prediction accuracy, and can effectively predict the load change in the demand response period of the air conditioning system.

标题:基于PCA-SOA-ELM的空调系统负荷预测
title:Load Prediction of Air Conditioning System Based on PCA-SOA-ELM

作者:闫秀英, 李忆言, 杜伊帆, 闫秀联
authors:YAN Xiuying, LI Yiyan, DU Yifan, YAN Xiulian

关键词:需求响应,负荷预测,主成分分析(PCA),海鸥优化算法(SOA),极限学习机(ELM),
keywords:demand response,load prediction,principal component analysis(PCA),seagull optimization algorithm(SOA),extreme learning machine(ELM),

发表日期:2022-06-10
2025-1-21 20:13 上传
文件大小:
1.57 MB
下载次数:
60
高速下载
【温馨提示】 您好!以下是下载说明,请您仔细阅读:
1、推荐使用360安全浏览器访问本站,选择您所需的PDF文档,点击页面下方“本地下载”按钮。
2、耐心等待两秒钟,系统将自动开始下载,本站文件均为高速下载。
3、下载完成后,请查看您浏览器的下载文件夹,找到对应的PDF文件。
4、使用PDF阅读器打开文档,开始阅读学习。
5、使用过程中遇到问题,请联系QQ客服。

本站提供的所有PDF文档、软件、资料等均为网友上传或网络收集,仅供学习和研究使用,不得用于任何商业用途。
本站尊重知识产权,若本站内容侵犯了您的权益,请及时通知我们,我们将尽快予以删除。
  • 手机访问
    微信扫一扫
  • 联系QQ客服
    QQ扫一扫
2022-2025 新资汇 - 参考资料免费下载网站 最近更新浙ICP备2024084428号
关灯 返回顶部
快速回复 返回顶部 返回列表