返回列表 发布新帖

[能源与动力工程] 基于迁移成分分析的多风电机组运行状态识别方法

7 0
admin 发表于 2025-1-22 08:30 | 查看全部 阅读模式

基于迁移成分分析的多风电机组运行状态识别方法
摘要:风电机组运行状态识别对风电机组发电性能评估和风电场精细化管理具有重要意义,然而不同风电机组的数据采集与监视控制系统(supervisory control and data acquisition,SCADA)数据分布差异明显,如果将已训练好的单台风电机组正常行为模型直接应用于多风电机组运行状态辨识,辨识精度较低。为了提高辨识精度,需要针对每台风电机组正常行为模型进行重复性训练,工作量大。为此,提出了一种基于迁移成分分析(transfer component analysis,TCA)的多风电机组运行状态划分模型。首先,采用基于最大互信息系数和反向传播(back propagation, BP)双隐层神经网络的变量优选方法挖掘风电机组运行状态关键影响变量;然后,以正常运行状态下的优选变量为输入,功率为输出,构建了基于BP双隐层神经网络的风电机组正常行为模型;最后,基于迁移成分分析,构建多风电机组运行状态划分模型。算例结果表明,所提模型可解决不同风电机组数据分布差异的问题,提高运行状态划分模型的精度和效率。

Abstract:The identification of the operating state of wind turbines is of great significance to the performance evaluation of wind turbines and the refined management of wind farms. However, the supervisory control and data acquisition (SCADA) data distribution of different wind turbines varies significantly. If the trained normal behavior model of single typhoon turbine is directly applied to the operating state identification of multiple wind turbines, the identification accuracy is low. In order to improve the recognition accuracy, it is necessary to conduct repetitive training for each wind turbine normal behavior model, which is a large workload.Therefore, a multi-wind turbines operating state identification model based on transfer component analysis (TCA) is proposed. Firstly, a variable optimization method based on the maximal information coefficient and back propagation (BP) double hidden layer neural network is used to mine the key influencing variables of wind turbine operating status. Then, the normal behavior model of wind turbine based on BP double-hidden layer neural network is constructed with the optimal variables as input and the power as output. Finally, based on transfer component analysis, a multi-wind turbines operation state classification model is constructed. The results show that the proposed model can solve the problem of data distribution differences between different wind turbines and improve the accuracy and efficiency of the operating state partition model.

标题:基于迁移成分分析的多风电机组运行状态识别方法
title:Wind Turbines Operating State Identification Method Based on Transfer Component Analysis

作者:李林晏, 韩 爽, 张雅洁, 陈 阳, 李 莉, 潘志强
authors:LI Linyan, HAN Shuang, ZHANG Yajie, CHEN Yang, LI Li, PAN Zhiqiang

关键词:风电机组,运行状态,正常行为模型,迁移学习,机器学习,
keywords:wind turbine,operating state,normal behavior model,transfer learning,machine learning,

发表日期:2022-04-08
2025-1-21 20:13 上传
文件大小:
2.51 MB
下载次数:
60
高速下载
【温馨提示】 您好!以下是下载说明,请您仔细阅读:
1、推荐使用360安全浏览器访问本站,选择您所需的PDF文档,点击页面下方“本地下载”按钮。
2、耐心等待两秒钟,系统将自动开始下载,本站文件均为高速下载。
3、下载完成后,请查看您浏览器的下载文件夹,找到对应的PDF文件。
4、使用PDF阅读器打开文档,开始阅读学习。
5、使用过程中遇到问题,请联系QQ客服。

本站提供的所有PDF文档、软件、资料等均为网友上传或网络收集,仅供学习和研究使用,不得用于任何商业用途。
本站尊重知识产权,若本站内容侵犯了您的权益,请及时通知我们,我们将尽快予以删除。
  • 手机访问
    微信扫一扫
  • 联系QQ客服
    QQ扫一扫
2022-2025 新资汇 - 参考资料免费下载网站 最近更新浙ICP备2024084428号
关灯 返回顶部
快速回复 返回顶部 返回列表