返回列表 发布新帖

[能源与动力工程] 基于小波变换的改进混合蛙跳差分进化神经网络预测模型的短期风速预测

8 0
admin 发表于 2025-1-22 12:30 | 查看全部 阅读模式

基于小波变换的改进混合蛙跳差分进化神经网络预测模型的短期风速预测
摘要:针对目前对风速序列短期预测中不同组合算法预测精度较差、适应性不强等问题,提出一种基于小波变换的组合预测模型算法,将风速序列经小波变换降低波动性与无序性,利用混合蛙跳算法(shuffled frog leaping algorithm,SFLA)优化逆向传播(back propagation,BP)神经网络的初始权值与阈值,将差分进化(difference evolution,DE)算法用于混合蛙跳算法子种群个体寻优策略,提高个体收敛速度与精度。通过将经小波变换分解得到的高、低频分量分别经组合模型算法进行风速预测与重构,通过实例验证,10、30 min相较60 min预测结果平均绝对百分比误差分别提高33.59%、12.21%,均方根误差分别提高28.77%、8.22%,三者平均预测误差分别为0.037、-0.014、0.011 m/s,与混合蛙跳-BP神经网络算法、BP神经网络算法横向对比,结果表明所提组合预测模型算法预测性能指标最佳。

Abstract:Aiming at the problems of poor prediction accuracy and poor adaptability of different combination algorithms in the current short-term forecasting of wind speed series, this paper proposes a combination forecasting model based on wavelet transform, which reduces the volatility and disorder of wind speed series through wavelet transform. The shuffled frog leaping algorithm(SFLA) is used to optimize the initial weight and threshold of the back propagation(BP) neural network, and the difference evolution(DE) algorithm is used in the SFLA's subpopulation individual optimization strategy which improves the speed and accuracy of individual convergence. The high and low frequency components decomposed by the wavelet transform are respectively used for wind speed prediction and reconstruction through the combined model algorithm. Compared with the 60 min prediction results, the mean absolute percentage errors of 10 min and 30 min were increased by 33.59% and 12.21% respectively, and the root mean square errors were increased by 28.77% and 8.22% respectively. The average prediction errors of the three are 0.037, -0.014, 0.011 m/s, horizontally compared with the SFLA-BP neural network algorithm and the BP neural network algorithm, the results show that the combination forecasting model of this paper predicts the best performance indicators.

标题:基于小波变换的改进混合蛙跳差分进化神经网络预测模型的短期风速预测
title:Short-Term Wind Speed Prediction Based on Improved Wavelet Transform and Shuffled Frog Leaping Difference Evolution Neural Network Algorithm

作者:付晓敏
authors:FU Xiaomin

关键词:风速,预测,小波变换,混合蛙跳算法(SFLA),差分进化(DE)算法,组合预测模型,
keywords:wind speed,forecast,wavelet transform,shuffled frog leaping algorithm(SFLA),difference evolution(DE) algorithm,combination forecasting model,

发表日期:2022-02-14
2025-1-21 20:12 上传
文件大小:
1.48 MB
下载次数:
60
高速下载
【温馨提示】 您好!以下是下载说明,请您仔细阅读:
1、推荐使用360安全浏览器访问本站,选择您所需的PDF文档,点击页面下方“本地下载”按钮。
2、耐心等待两秒钟,系统将自动开始下载,本站文件均为高速下载。
3、下载完成后,请查看您浏览器的下载文件夹,找到对应的PDF文件。
4、使用PDF阅读器打开文档,开始阅读学习。
5、使用过程中遇到问题,请联系QQ客服。

本站提供的所有PDF文档、软件、资料等均为网友上传或网络收集,仅供学习和研究使用,不得用于任何商业用途。
本站尊重知识产权,若本站内容侵犯了您的权益,请及时通知我们,我们将尽快予以删除。
  • 手机访问
    微信扫一扫
  • 联系QQ客服
    QQ扫一扫
2022-2025 新资汇 - 参考资料免费下载网站 最近更新浙ICP备2024084428号
关灯 返回顶部
快速回复 返回顶部 返回列表