返回列表 发布新帖

[能源与动力工程] 铅酸蓄电池寿命预测的LIBSVM建模方法研究

5 0
admin 发表于 2025-1-22 11:30 | 查看全部 阅读模式

铅酸蓄电池寿命预测的LIBSVM建模方法研究
摘要:铅酸蓄电池的内阻会随其运行时间增加而增大,从而使其容量下降并导致循环使用寿命减小。因此,对其使用寿命的准确评估预测将有助于提高变电站直流电源系统的持续供电能力和运行可靠性。LIBSVM支持向量机是遵循结构风险最小化原则发展的机器学习方法,将其用于蓄电池寿命预测,具有不依靠蓄电池详细数学模型建立其循环寿命预测模型的特点。基于此,在研究支持向量机的基本原理基础上,进一步研究利用LIBSVM支持向量机基于蓄电池健康状态、端电压和电池剩余容量的训练样本数据,建立反映电池容量与健康状态和端电压非线性映射的建模方法,并讨论基于交叉验证设计LIBSVM回归机最优参数的方法。实验结果表明,基于LIBSVM的铅酸蓄电池寿命预测模型具有较高的预测精度,该方法是切实可行的。

Abstract:The internal resistance of the lead-acid battery increases as its operating time increases, which will result in the decrease in its capacity and a consequent reduction in service life. Therefore, the accurate assessment and prediction of its useful life is benefit for improving the ability of continuous power supply and operational reliability of substation DC power system. The support vector machine of LIBSVM is a machine learning method that follows the principle of structural risk minimization. It has the characteristic of using support vector machine to establish the predict model of the battery useful life without modeling the detailed mathematical model of battery. So based on studying the basic principle of support vector machine, the method that uses the support vector machine of LIBSVM to model the non-linear mapping between useful life and both the terminal voltage and state of health based on the training sample data of these three state variables is proposed. At the same time, the method of designing the optimal parameters for the regression machine of LIBSVM based on cross-validation is discussed. The experimental results show that the LIBSVM-based lead-acid battery life prediction model has high prediction accuracy. The feasibility of the proposed prediction method is verified as well.

标题:铅酸蓄电池寿命预测的LIBSVM建模方法研究
title:LIBSVM Modeling Method for Life Prediction of Lead-Acid Battery

作者:杨传凯,刘伟,李旭,李良书,付峰,周际城,陈凯
authors:YANG Chuankai,LIU Wei,LI Xu,LI Liangshu,FU Feng,ZHOU Jicheng,CHEN Kai

关键词:LIBSVM,支持向量机,铅酸蓄电池,寿命预测,
keywords:LIBSVM,support vector machine,lead-acid battery,life prediction,

发表日期:2018-05-07
2025-1-21 20:06 上传
文件大小:
968.15 KB
下载次数:
60
高速下载
【温馨提示】 您好!以下是下载说明,请您仔细阅读:
1、推荐使用360安全浏览器访问本站,选择您所需的PDF文档,点击页面下方“本地下载”按钮。
2、耐心等待两秒钟,系统将自动开始下载,本站文件均为高速下载。
3、下载完成后,请查看您浏览器的下载文件夹,找到对应的PDF文件。
4、使用PDF阅读器打开文档,开始阅读学习。
5、使用过程中遇到问题,请联系QQ客服。

本站提供的所有PDF文档、软件、资料等均为网友上传或网络收集,仅供学习和研究使用,不得用于任何商业用途。
本站尊重知识产权,若本站内容侵犯了您的权益,请及时通知我们,我们将尽快予以删除。
  • 手机访问
    微信扫一扫
  • 联系QQ客服
    QQ扫一扫
2022-2025 新资汇 - 参考资料免费下载网站 最近更新浙ICP备2024084428号
关灯 返回顶部
快速回复 返回顶部 返回列表