返回列表 发布新帖

[能源与动力工程] 变电设备温度态势感知及辅助决策系统方案研究

7 0
admin 发表于 2025-1-21 15:00 | 查看全部 阅读模式

变电设备温度态势感知及辅助决策系统方案研究
摘要:目的 为了提升变电设备运维管理的智能化水平,及时发现并预防因设备过热导致的故障风险,保障电网安全稳定运行,提出了变电设备温度态势感知及辅助决策方案。 方法 从感知层、理解层、预测层和辅助决策层4个方面展开研究。在感知层,利用K近邻(K-nearest neighbor,KNN)分类算法分析多类温度数据的关联性。在理解层,通过BP神经网络构建历史数据传递模型,以处理历史数据缺失问题。在预测层,为应对非线性数据和噪声,设计了自回归积分滑动平均(autoregressive integrated moving average,ARIMA)模型与支持向量机(support vector machine,SVM)组合的温度预测模型。在辅助决策层,应用灰色关联度分析设备温度变化与故障风险之间的关系。 结果 基于所提方案的算例验证结果表明,该方案实现了对设备未来温度变化趋势的有效感知,并为设备缺陷判断提供了依据。 结论 所提方案通过多维度、深层次的温度数据分析,揭示了设备温度与故障风险之间潜在的关联关系,实现了对变电设备运行趋势的预判,为变电设备运行方式优化以及制定设备检修计划提供参考。

Abstract:Objectives To enhance the intelligent management of substation equipment maintenance, timely identify and mitigate the risks of failures caused by device overheating, and ensure the safe and stable operation of the power grid, the temperature situation awareness and auxiliary decision-making scheme of substation equipment were proposed. Methods The research was carried out from four aspects: the perception layer, the understanding layer, the prediction layer, and the auxiliary decision-making layer. In the perception layer, the K-nearest neighbor (KNN) classification algorithm was used to analyze the correlation of multi-class temperature data. In the understanding layer, a BP neural network was employed to construct a historical data transmission model to address missing historical data issues. In the prediction layer, a temperature prediction model combining autoregressive integrated moving average (ARIMA) and support vector machine (SVM) was designed to handle nonlinear data and noise. In the auxiliary decision-making layer, the grey relational analysis was applied to analyze the relationship between equipment temperature changes and fault risks. Results The verification results of numerical examples based on the proposed scheme show that the scheme realizes the effective perception of the future temperature variation trends of the equipment and provides a basis for the identification of equipment defects. Conclusions Through multi-dimensional and deep-level temperature data analysis, the proposed scheme reveals the potential correlation between equipment temperature and fault risk, realizes the prediction of the operational trend of substation equipment, and provides a reference for the optimization of operational mode and the formulation of equipment maintenance plan.

标题:变电设备温度态势感知及辅助决策系统方案研究
title:Research on Temperature Situation Awareness and Auxiliary Decision-Making System Scheme of Substation Equipment

作者:陈昱, 丁鸿, 崔勇, 朱里, 陈士俊, 凌秋阳, 徐勇生, 郑建
authors:Yu CHEN, Hong DING, Yong CUI, Li ZHU, Shijun CHEN, Qiuyang LING, Yongsheng XU, Jian ZHENG

关键词:电力系统,变电站,温度态势感知,辅助决策,自回归积分滑动平均(ARIMA)模型,BP神经网络,支持向量机(SVM),
keywords:power system,substation,temperature state awareness,auxiliary decision-making,autoregressive integrated moving average (ARIMA) model,BP neural network,support vector machine (SVM),

发表日期:2024-08-31
2025-1-21 00:30 上传
文件大小:
1.96 MB
下载次数:
60
高速下载
【温馨提示】 您好!以下是下载说明,请您仔细阅读:
1、推荐使用360安全浏览器访问本站,选择您所需的PDF文档,点击页面下方“本地下载”按钮。
2、耐心等待两秒钟,系统将自动开始下载,本站文件均为高速下载。
3、下载完成后,请查看您浏览器的下载文件夹,找到对应的PDF文件。
4、使用PDF阅读器打开文档,开始阅读学习。
5、使用过程中遇到问题,请联系QQ客服。

本站提供的所有PDF文档、软件、资料等均为网友上传或网络收集,仅供学习和研究使用,不得用于任何商业用途。
本站尊重知识产权,若本站内容侵犯了您的权益,请及时通知我们,我们将尽快予以删除。
  • 手机访问
    微信扫一扫
  • 联系QQ客服
    QQ扫一扫
2022-2025 新资汇 - 参考资料免费下载网站 最近更新浙ICP备2024084428号
关灯 返回顶部
快速回复 返回顶部 返回列表