基于重采样降噪与主成分分析的宽卷积深度神经网络风机故障诊断方法
摘要:针对数据驱动的风机故障诊断面临的数据量少、信号噪声干扰等问题,提出了一种基于宽卷积深度神经网络的故障诊断方法。该方法采用了重采样、小波阈值去噪等信号预处理方式,既增加了信息密度,又保证了信息的完整性,结合主成分分析法(principal component analysis,PCA)替代人工经验进行数据通道的选取。利用卷积神经网络的强大特征提取能力,通过较少的数据训练即可对风机机组在时域上的故障信号进行有效的特征提取,从而可以对风机进行精确的故障诊断。基于某真实风机机组数据的实验结果,验证了该方法的有效性。
Abstract:Fault diagnosis of wind turbines suffers from less training data and noises. A method based on wide deep convolutional neural network with resampling and principal component analysis was presented for the diagnosis of mechanical faults (that is the main fault component of wind turbines). The method adopted a variety of signal preprocessing methods such as resampling wavelet threshold denoising and principal component analysis to increase the information density and ensure the integrity of the information. After being trained with small amount of data, the network which has a powerful feature extraction capability could extract the fault signal in the time domain which will be further used for fault diagnosis. Experimental results were verified based on the real wind turbine data, demonstrating the effectiveness of this method.
标题:基于重采样降噪与主成分分析的宽卷积深度神经网络风机故障诊断方法
title:Fault Diagnosis Method of Wind Turbines Based on Wide Deep Convolutional Neural Network With Resampling and Principal Component Analysis
作者:刘展, 包琰洋, 李大字
authors:Zhan LIU, Yanyang BAO, Dazi LI
关键词:风机,宽卷积深度卷积神经网络,重采样,小波阈值去噪,主成分分析法,
keywords:wind turbine,wide deep convolutional neural network,resampling,wavelet threshold denoising,principal component analysis,
发表日期:2023-12-31
- 文件大小:
- 3.03 MB
- 下载次数:
- 60
-
高速下载
|
|