返回列表 发布新帖

[能源与动力工程] 基于概率神经网络-小波神经网络-DS信息融合的电厂引风机故障诊断

7 0
admin 发表于 2025-1-21 11:30 | 查看全部 阅读模式

基于概率神经网络-小波神经网络-DS信息融合的电厂引风机故障诊断
摘要:针对电厂引风机工况复杂、工作环境恶劣、易出现故障等问题,提出了一种基于改进D-S证据理论的融合诊断方法。该方法利用概率神经网络(probabilistic neural network,PNN)和小波神经网络(wavelet neural network,WNN)对测试样本进行初步诊断,并形成证据体,再利用改进D-S融合方法进行融合诊断。该融合方法根据证据体的信任度和焦元的信任度分配冲突信息,使得信任度高的焦元支持率得到加强、信任度低的焦元支持率得到削弱,融合结果更为合理。仿真结果表明,融合故障诊断方法能有效地避免误诊现象,提高了诊断的正确率,且能合理分配冲突信息。

Abstract:Aiming at the problems of complex operating conditions of induced draft fan, harsh working environment, and easy failure of power plant induced draft fan, a fault diagnosis method of the improved dempster-shafer evidence theory was proposed. In this method, the probabilistic neural network (PNN) and wavelet neural network (WNN) were used for preliminary diagnosis, and the evidence bodies were formed according to the output of PNN and WNN. Then the improved D-S fusion method was used for fusion diagnosis. The improved D-S method distributes conflict information according to the trust degree of the evidence and the focal element, so that the support rate of the focal element with high trust degree is strengthened, and the focal element with low trust degree is weakened, which makes the fusion diagnosis result more reasonable. The simulation results show that the proposed method can effectively diagnose the vibration fault of induced draft fan, avoid misdiagnosis, improve the accuracy of diagnosis, and reasonably distribute conflicting information.

标题:基于概率神经网络-小波神经网络-DS信息融合的电厂引风机故障诊断
title:Fault Diagnosis of Power Plant Induced Draft Fan Based on PNN-WNN-DS Information Fusion

作者:张航, 周传杰, 张林, 陈节涛, 徐春梅, 彭道刚
authors:Hang ZHANG, Chuanjie ZHOU, Lin ZHANG, Jietao CHEN, Chunmei XU, Daogang PENG

关键词:电厂引风机,焦元,故障诊断,改进D-S证据理论,
keywords:power plant induced draft fan,focal element,fault diagnosis,improved D-S evidential theory,

发表日期:2022-12-31
2025-1-21 00:25 上传
文件大小:
1.14 MB
下载次数:
60
高速下载
【温馨提示】 您好!以下是下载说明,请您仔细阅读:
1、推荐使用360安全浏览器访问本站,选择您所需的PDF文档,点击页面下方“本地下载”按钮。
2、耐心等待两秒钟,系统将自动开始下载,本站文件均为高速下载。
3、下载完成后,请查看您浏览器的下载文件夹,找到对应的PDF文件。
4、使用PDF阅读器打开文档,开始阅读学习。
5、使用过程中遇到问题,请联系QQ客服。

本站提供的所有PDF文档、软件、资料等均为网友上传或网络收集,仅供学习和研究使用,不得用于任何商业用途。
本站尊重知识产权,若本站内容侵犯了您的权益,请及时通知我们,我们将尽快予以删除。
  • 手机访问
    微信扫一扫
  • 联系QQ客服
    QQ扫一扫
2022-2025 新资汇 - 参考资料免费下载网站 最近更新浙ICP备2024084428号
关灯 返回顶部
快速回复 返回顶部 返回列表