返回列表 发布新帖

[能源与动力工程] 基于BP神经网络和最小二乘支持向量机的灰熔点预测和对比

4 0
admin 发表于 2025-1-21 11:30 | 查看全部 阅读模式

基于BP神经网络和最小二乘支持向量机的灰熔点预测和对比
摘要:为了预测燃煤锅炉受热面的结渣情况,以灰成分金属氧化物、煤灰SO3含量以及结渣评判指标为自变量,灰熔点变形温度(deformation temperature,DT)和软化温度(softening temperature,ST)为因变量,建立了BP神经网络(BP neural network,BPNN)和最小二乘支持向量机(least squares support vector machine,LSSVM)的灰熔点预测模型。回归分析和误差分析结果表明:针对样本量多的DT预测过程,2种模型精度接近,预测结果置信度均达到95%,相关系数均约为0.92,平均相对误差均约为3.4%;针对样本量较少的ST预测过程,LSSVM模型预测效果较优,相关系数为0.950 52,高于BPNN模型的0.904 26,平均相对误差为4.98%,并且大误差点个数少于BPNN模型。因此,LSSVM模型能够更准确预测飞灰的DT和ST。

Abstract:To predict the slagging on heating surface of coal-fired boilers, BP neural network (BPNN) and least squares support vector machine (LSSVM) prediction models were established to predict ash fusion temperature, deformation temperature (DT) and softening temperature (ST). The models take ash metal oxide, SO3 content of ash and slagging evaluation indexes as independent variables, and take DT and ST as dependent variables. Regression analysis and error analysis show that when predicting DT with a large number of samples, the prediction accuracy of the two models is similar, and the confidence of prediction is over 95%. The correlation coefficients are both about 0.92, and the average relative errors are about 3.4%. When predicting ST with less samples, LSSVM model is better with a correlation coefficient of 0.950 52, which is higher than 0.904 26 of BPNN model. The average relative error is 4.98%, and the number of large error points is less than the BPNN model. Therefore, LSSVM model can predict DT and ST of fly ash more accurately.

标题:基于BP神经网络和最小二乘支持向量机的灰熔点预测和对比
title:Prediction and Comparison of Ash Fusion Temperatures Based on BP Neural Network and Least Squares Support Vector Machine

作者:时浩, 肖海平, 刘彦鹏
authors:Hao SHI, Haiping XIAO, Yanpeng LIU

关键词:BP神经网络(BPNN),最小二乘支持向量机(LSSVM),灰熔点,灰成分,结渣评判指标,
keywords:BP neural network (BPNN),least squares support vector machine (LSSVM),ash fusion point,ash composition,slagging evaluation index,

发表日期:2022-02-28
2025-1-21 00:23 上传
文件大小:
1.14 MB
下载次数:
60
高速下载
【温馨提示】 您好!以下是下载说明,请您仔细阅读:
1、推荐使用360安全浏览器访问本站,选择您所需的PDF文档,点击页面下方“本地下载”按钮。
2、耐心等待两秒钟,系统将自动开始下载,本站文件均为高速下载。
3、下载完成后,请查看您浏览器的下载文件夹,找到对应的PDF文件。
4、使用PDF阅读器打开文档,开始阅读学习。
5、使用过程中遇到问题,请联系QQ客服。

本站提供的所有PDF文档、软件、资料等均为网友上传或网络收集,仅供学习和研究使用,不得用于任何商业用途。
本站尊重知识产权,若本站内容侵犯了您的权益,请及时通知我们,我们将尽快予以删除。
  • 手机访问
    微信扫一扫
  • 联系QQ客服
    QQ扫一扫
2022-2025 新资汇 - 参考资料免费下载网站 最近更新浙ICP备2024084428号
关灯 返回顶部
快速回复 返回顶部 返回列表