返回列表 发布新帖

[能源与动力工程] 基于深度小世界神经网络的风电机组异常检测

6 0
admin 发表于 2025-1-21 12:00 | 查看全部 阅读模式

基于深度小世界神经网络的风电机组异常检测
摘要:准确有效的状态监测是提高风电机组可靠性和安全性的关键。近年来,基于深度神经网络(deep neural network,DNN)的智能化异常检测方法越来越受到人们的重视。针对实际工业中难以获得准确的有标签数据的问题,提出了一种基于无监督学习的深度小世界神经网络(deep small-world neural network,DSWNN)来检测风电机组的早期故障。在深度置信网络(deep belief network,DBN)构建过程中,首先采用多个受限玻尔兹曼机(restricted Boltzmann machines,RBM)堆叠常规自动编码网络,并利用风机的无标签数据采集与监视控制(supervisory control and data acquisition,SCADA)数据进行预训练。然后,利用随机加边法将训练后的网络进行小世界特性转换,再利用最少的有标签数据对网络参数进行微调训练。此外,为了应付风速扰动并减少虚警,又提出了一种基于极值理论的自适应阈值作为异常判断准则。最后,通过2个风机异常检测的应用实例,并与DBN和DNN算法进行了对比,验证了该方法具有良好的有效性和准确性。

Abstract:Accurate and efficient condition monitoring is the key to enhance the reliability and security of wind turbines. In recent years, the intelligent anomaly detection method based on deep neural networks (DNN) has been receiving increasing attention. Since accurately labeled data are usually difficult to obtain in real industries, this paper proposed a novel deep small-world neural network (DSWNN) on the basis of unsupervised learning to detect the early failure of wind turbines. During the deep belief network (DBN) construction, a regular auto-encoder network with multiple restricted Boltzmann machines (RBM) was first stacked and pre-trained by using unlabeled supervisory control and data acquisition (SCADA) data of wind turbines. After that, the trained network was transformed into a DSWNN model by the randomly add-edges method, where the network parameters are fine-tuned by using minimal amounts of labeled data. In order to deal with the disturbances of wind speed and reduce false alarms, an adaptive threshold based on extreme value theory was presented as the criterion of anomaly judgment. The DSWNN model is excellent in depth mining data characteristics and accurate measurements. Finally, two failure cases of wind turbine anomaly detection were given to demonstrate the validity and accuracy of the proposed DSWNN contrasted with the DBN and DNN algorithms.

标题:基于深度小世界神经网络的风电机组异常检测
title:Anomaly Detection of Wind Turbines Based on Deep Small-World Neural Network

作者:李亚光, 李蒙
authors:Yaguang LI, Meng LI

关键词:风电机组,数据采集与监视控制(SCADA)数据,故障诊断,深度小世界神经网络(DSWNN),自适应阈值,
keywords:wind turbine,supervisory control and data acquisition (SCADA) data,fault diagnosis,deep small-world neural network (DSWNN),adaptive threshold,

发表日期:2021-06-30
2025-1-21 00:21 上传
文件大小:
661.09 KB
下载次数:
60
高速下载
【温馨提示】 您好!以下是下载说明,请您仔细阅读:
1、推荐使用360安全浏览器访问本站,选择您所需的PDF文档,点击页面下方“本地下载”按钮。
2、耐心等待两秒钟,系统将自动开始下载,本站文件均为高速下载。
3、下载完成后,请查看您浏览器的下载文件夹,找到对应的PDF文件。
4、使用PDF阅读器打开文档,开始阅读学习。
5、使用过程中遇到问题,请联系QQ客服。

本站提供的所有PDF文档、软件、资料等均为网友上传或网络收集,仅供学习和研究使用,不得用于任何商业用途。
本站尊重知识产权,若本站内容侵犯了您的权益,请及时通知我们,我们将尽快予以删除。
  • 手机访问
    微信扫一扫
  • 联系QQ客服
    QQ扫一扫
2022-2025 新资汇 - 参考资料免费下载网站 最近更新浙ICP备2024084428号
关灯 返回顶部
快速回复 返回顶部 返回列表