返回列表 发布新帖

[能源与动力工程] 基于改进K-means聚类的风光发电场景划分

7 0
admin 发表于 2025-1-21 10:30 | 查看全部 阅读模式

基于改进K-means聚类的风光发电场景划分
摘要:针对可再生能源发电,尤其是风力、光伏发电的出力不确定性问题,结合改进后的K-means聚类方法对发电的状态进行场景划分。首先建立风力、光伏发电的不确定性模型,选用合适的概率密度函数进行拟合;之后结合密度聚类和提出的混合评价函数,对基本的K-means聚类算法进行改进,解决了算法的初始聚类中心和聚类个数难以选取的问题;然后运用改进后的K-means聚类对某地风力、光伏发电场景进行聚类划分,从而将不确定性问题转化成确定性问题。最后通过对场景划分的算例进行分析,验证了所提方法的工程实用性。

Abstract:In view of the uncertainty of power generation in renewable energy, especially wind power and photovoltaic power generation, the improved K-means clustering method was used to segment the state of power generation. Firstly, the uncertainty model of wind power and photovoltaic power generation was established, and the appropriate probability density function was used to fit. Then the basic K-means clustering algorithm was improved by combining density clustering and proposed hybrid evaluation function, to solve the problem that the initial clustering center and the number of clusters were difficult to select. The improved K-means clustering was used to cluster the wind and photovoltaic scenes in a certain place, thus transforming the uncertainty problem into a deterministic problem. Finally, the practicability of the proposed method was verified by analyzing an example of scenario division.

标题:基于改进K-means聚类的风光发电场景划分
title:Wind and Photovoltaic Generation Scene Division Based on Improved K-means Clustering

作者:宋学伟, 刘玉瑶
authors:Xuewei SONG, Yuyao LIU

关键词:风力发电,光伏发电,密度聚类,K-means聚类,场景划分,
keywords:wind power generation,photovoltaic power generation,density clustering,K-means clustering,scenario division,

发表日期:2020-12-31
2025-1-21 00:20 上传
文件大小:
235.9 KB
下载次数:
60
高速下载
【温馨提示】 您好!以下是下载说明,请您仔细阅读:
1、推荐使用360安全浏览器访问本站,选择您所需的PDF文档,点击页面下方“本地下载”按钮。
2、耐心等待两秒钟,系统将自动开始下载,本站文件均为高速下载。
3、下载完成后,请查看您浏览器的下载文件夹,找到对应的PDF文件。
4、使用PDF阅读器打开文档,开始阅读学习。
5、使用过程中遇到问题,请联系QQ客服。

本站提供的所有PDF文档、软件、资料等均为网友上传或网络收集,仅供学习和研究使用,不得用于任何商业用途。
本站尊重知识产权,若本站内容侵犯了您的权益,请及时通知我们,我们将尽快予以删除。
  • 手机访问
    微信扫一扫
  • 联系QQ客服
    QQ扫一扫
2022-2025 新资汇 - 参考资料免费下载网站 最近更新浙ICP备2024084428号
关灯 返回顶部
快速回复 返回顶部 返回列表