返回列表 发布新帖

[能源与动力工程] 光伏发电系统发电功率预测

6 0
admin 发表于 2025-1-21 17:30 | 查看全部 阅读模式

光伏发电系统发电功率预测
摘要:为解决光伏发电系统发电功率在不同条件下误差较大问题,提出光伏发电系统发电功率预测新方法。通过分析光伏发电系统结构,研究光伏发电系统发电功率影响因素;以季节和天气类型作为历史样本选取样本源,针对气象部门提供的预测日分时气象数据在历史数据库中寻找相似数据点作为历史样本;依据历史样本构建离线参数寻优数据总集,使用核函数极限学习机算法构建发电系统发电功率预测模型,通过粒子群算法优化模型参数。实验结果表明:所提方法在不同条件下预测太阳能光伏发电系统发电功率的平均绝对百分比误差分别为1.47%和6.39%,光伏组件在综合异常条件下发电功率预测误差相对变化均低于1%,证明所提方法满足实际预测要求。

Abstract:In order to solve the problem of large errors in the power generation of solar photovoltaic system under different conditions, a new method for power generation prediction of solar photovoltaic system was proposed. By analyzing the structure of solar photovoltaic power generation system, the influencing factors of solar photovoltaic power generation system were studied. Seasons and weather types were used as historical samples to select sample sources, and similar data points were searched in the historical database for predicting daily time-sharing meteorological data provided by meteorological departments as historical samples. The off-line parameter optimization data set was constructed with historical samples, and the generation power prediction model of power generation system was constructed with the kernel function limit learning machine algorithm, and the model parameters were optimized by the particle swarm optimization algorithm. The experimental results show that the mean absolute percent errors of the proposed method are 1.47% and 6.39% respectively under different conditions, and the relative variation of the power prediction errors of solar photovoltaic modules is less than 1% under comprehensive abnormal conditions. It is proved that the proposed method meets the actual prediction requirements.

标题:光伏发电系统发电功率预测
title:Power Forecasting of Photovoltaic Power Generation System

作者:吴攀
authors:Pan WU

关键词:光伏,功率预测,粒子群算法,核函数极限学习机,
keywords:photovoltaic,power forecasting,particle swarm optimization,kernel function limit learning machine,

发表日期:2020-06-30
2025-1-21 00:18 上传
文件大小:
287.9 KB
下载次数:
60
高速下载
【温馨提示】 您好!以下是下载说明,请您仔细阅读:
1、推荐使用360安全浏览器访问本站,选择您所需的PDF文档,点击页面下方“本地下载”按钮。
2、耐心等待两秒钟,系统将自动开始下载,本站文件均为高速下载。
3、下载完成后,请查看您浏览器的下载文件夹,找到对应的PDF文件。
4、使用PDF阅读器打开文档,开始阅读学习。
5、使用过程中遇到问题,请联系QQ客服。

本站提供的所有PDF文档、软件、资料等均为网友上传或网络收集,仅供学习和研究使用,不得用于任何商业用途。
本站尊重知识产权,若本站内容侵犯了您的权益,请及时通知我们,我们将尽快予以删除。
  • 手机访问
    微信扫一扫
  • 联系QQ客服
    QQ扫一扫
2022-2025 新资汇 - 参考资料免费下载网站 最近更新浙ICP备2024084428号
关灯 返回顶部
快速回复 返回顶部 返回列表