返回列表 发布新帖

[能源与动力工程] 模糊C均值聚类在光伏阵列故障样本数据识别中的应用

5 0
admin 发表于 2025-1-21 18:00 | 查看全部 阅读模式

模糊C均值聚类在光伏阵列故障样本数据识别中的应用
摘要:光伏电站由数量庞大的光伏组件构成,因复杂的生产工艺及艰苦的工作环境,光伏系统直流侧故障频发,直接影响到光伏系统的发电效益。如何从光伏阵列的运行数据中提取有效的故障样本,并对其进行识别,是建立故障模型的重要步骤。因此提出一种基于模糊C均值(fuzzy C-means,FCM)聚类算法对故障样本进行划分及标识的方法。首先对故障条件下光伏阵列的输出特性进行分析,提取出故障特征向量(开路电压Uoc,短路电流Isc,最大工作点电压Um,最大工作点电流Im)。为排除外部激励条件对电气参数的影响,将故障特征向量统一转换至标准测试条件(standard test condition,STC)。最后根据FCM算法良好的模糊信息处理功能,对开路故障、短路故障、阴影故障、异常老化故障的样本进行聚类划分。实际运行数据证明,该方法可以精确、可靠地对光伏系统直流侧典型故障的样本进行智能聚类,并有效地描述不同故障下光伏阵列电气参数的分布特征。

Abstract:The photovoltaic (PV) power station is composed of a large number of photovoltaic modules.Due to the complicated production technology and hard working environment, photovoltaic system DC-side faults occur frequently, directly affecting the photovoltaic system's power generation efficiency.How to extract valid fault sample from the PV array's operating data and identify the fault is an important step to establish a fault model.Therefore, a method based on fuzzy C-means (FCM) clustering to divide and identify the fault samples was proposed.Firstly, the output features of PV array under fault conditions were analyzed and the fault eigenvectors were put forward (open circuit voltage, short circuit current, maximum power point voltage and current).In order to exclude the influence of external excitation conditions on the electrical parameters, the fault eigenvectors were uniformly converted to the standard test condition (STC).Finally, according to the good fuzzy information processing function of FCM, the fault samples of open fault, short fault, shadow fault and abnormal aging fault were clustered.By using the actual operation data, it was proved that this method could accurately and reliably classify the fault samples of the typical fault on the DC side of the PV system and could effectively describe the distribution characteristics of the PV array's electrical parameters in different faults.

标题:模糊C均值聚类在光伏阵列故障样本数据识别中的应用
title:Application of FCM Method in Data Division of Photovoltaic Array Fault Samples

作者:陆灵骍,朱红路,连魏魏,戴松元,姚建曦
authors:Lingxing LU,Honglu ZHU,Weiwei LIAN,Songyuan DAI,Jianxi YAO

关键词:光伏系统,故障样本,模糊C均值聚类,故障特征提取,
keywords:photovoltaic (PV) system,fault samples,fuzzy C-means (FCM) clustering,fault feature extraction,

发表日期:2018-04-30
2025-1-21 00:14 上传
文件大小:
1.32 MB
下载次数:
60
高速下载
【温馨提示】 您好!以下是下载说明,请您仔细阅读:
1、推荐使用360安全浏览器访问本站,选择您所需的PDF文档,点击页面下方“本地下载”按钮。
2、耐心等待两秒钟,系统将自动开始下载,本站文件均为高速下载。
3、下载完成后,请查看您浏览器的下载文件夹,找到对应的PDF文件。
4、使用PDF阅读器打开文档,开始阅读学习。
5、使用过程中遇到问题,请联系QQ客服。

本站提供的所有PDF文档、软件、资料等均为网友上传或网络收集,仅供学习和研究使用,不得用于任何商业用途。
本站尊重知识产权,若本站内容侵犯了您的权益,请及时通知我们,我们将尽快予以删除。
  • 手机访问
    微信扫一扫
  • 联系QQ客服
    QQ扫一扫
2022-2025 新资汇 - 参考资料免费下载网站 最近更新浙ICP备2024084428号
关灯 返回顶部
快速回复 返回顶部 返回列表