返回列表 发布新帖

[金属工艺] 基于无监督深度学习的声发射信号聚类分析

4 0
admin 发表于 2025-1-19 14:38 | 查看全部 阅读模式

基于无监督深度学习的声发射信号聚类分析
摘要:为提高声发射信号检测诊断的自动化程度,直接从声发射波形出发,提出了一种基于深度神经网络与聚类分析的声发射信号分类方法。针对声发射信号标签数据难以获取的问题,采用无监督学习方式,根据大量声发射实测波形进行深度一维卷积自编码器训练,实现了声发射信号特征的自动提取,进而结合K均值聚类算法准确区分不同类型的声发射信号。铅芯在复合材料板上突然断裂和摩擦的声发射试验表明,提出的方法能自动识别不同类别的声发射信号,识别效果优于基于人为设定声发射信号特征的聚类方法。

标题:基于无监督深度学习的声发射信号聚类分析

作者:李睿,张纯,万乐,闫小青,

关键词:声发射信号,无监督学习,特征提取,聚类分析,卷积自编码器,模式识别,

发表日期:2021年2月
2025-1-19 14:38 上传
文件大小:
3.41 MB
下载次数:
60
高速下载
【温馨提示】 您好!以下是下载说明,请您仔细阅读:
1、推荐使用360安全浏览器访问本站,选择您所需的PDF文档,点击页面下方“本地下载”按钮。
2、耐心等待两秒钟,系统将自动开始下载,本站文件均为高速下载。
3、下载完成后,请查看您浏览器的下载文件夹,找到对应的PDF文件。
4、使用PDF阅读器打开文档,开始阅读学习。
5、使用过程中遇到问题,请联系QQ客服。

本站提供的所有PDF文档、软件、资料等均为网友上传或网络收集,仅供学习和研究使用,不得用于任何商业用途。
本站尊重知识产权,若本站内容侵犯了您的权益,请及时通知我们,我们将尽快予以删除。
  • 手机访问
    微信扫一扫
  • 联系QQ客服
    QQ扫一扫
2022-2025 新资汇 - 参考资料免费下载网站 最近更新浙ICP备2024084428号
关灯 返回顶部
快速回复 返回顶部 返回列表