返回列表 发布新帖

[金属工艺] 基于PCA和SVM的铬层裂纹声发射识别方法

4 0
admin 发表于 2025-1-19 14:09 | 查看全部 阅读模式

基于PCA和SVM的铬层裂纹声发射识别方法针对采用幅值、能量等统计特征参数分类识别声发射(AE)信号时存在的信息冗余问题,提出利用主成分分析(PCA)方法减少信息冗余,提取AE信号统计特征。设计了钢板表面铬层裂纹试验,对统计特征参数进行主成分分析,提取了两个主成分。设计了支持向量机(SVM)分类器,以主成分为输入向量,分类识别铬层裂纹AE信号。验证了主成分可以有效表征AE信号统计特征,减少了信息冗余,提高了分类效率及准确率。

标题:基于PCA和SVM的铬层裂纹声发射识别方法

作者:李力,李骥,

关键词:声发射,统计特征参数,主成分分析(PCA),支持向量机(SVM),识别,

发表日期:2014年2月
2025-1-19 14:09 上传
文件大小:
1.57 MB
下载次数:
60
高速下载
【温馨提示】 您好!以下是下载说明,请您仔细阅读:
1、推荐使用360安全浏览器访问本站,选择您所需的PDF文档,点击页面下方“本地下载”按钮。
2、耐心等待两秒钟,系统将自动开始下载,本站文件均为高速下载。
3、下载完成后,请查看您浏览器的下载文件夹,找到对应的PDF文件。
4、使用PDF阅读器打开文档,开始阅读学习。
5、使用过程中遇到问题,请联系QQ客服。

本站提供的所有PDF文档、软件、资料等均为网友上传或网络收集,仅供学习和研究使用,不得用于任何商业用途。
本站尊重知识产权,若本站内容侵犯了您的权益,请及时通知我们,我们将尽快予以删除。
  • 手机访问
    微信扫一扫
  • 联系QQ客服
    QQ扫一扫
2022-2025 新资汇 - 参考资料免费下载网站 最近更新浙ICP备2024084428号
关灯 返回顶部
快速回复 返回顶部 返回列表