返回列表 发布新帖

[金属工艺] 基于超声TOFD直通波及神经网络的近表面缺陷自动识别

4 0
admin 发表于 2025-1-19 13:43 | 查看全部 阅读模式

基于超声TOFD直通波及神经网络的近表面缺陷自动识别针对超声TOFD存在近表面盲区及近表面缺陷自动识别分类的问题,提出了基于超声TOFD直通波及神经网络对近表面孔状缺陷识别分类的方法。在近表面缺陷检测信号的直通波部分选取多个关键点,揭示了各关键点幅度分布与近表面缺陷深度的关系,获得了用于近表面缺陷检测的幅度分布特征值,并将该特征值用于BP神经网络对缺陷识别分类。试验结果表明,该方法能够对铝合金板近表面孔状缺陷进行准确、有效的自动识别分类。

标题:基于超声TOFD直通波及神经网络的近表面缺陷自动识别

作者:陈振华,胡怀辉,卢超,

关键词:超声TOFD,BP神经网络,近表面缺陷,特征值,

发表日期:2014年3月
2025-1-19 13:43 上传
文件大小:
1.52 MB
下载次数:
60
高速下载
【温馨提示】 您好!以下是下载说明,请您仔细阅读:
1、推荐使用360安全浏览器访问本站,选择您所需的PDF文档,点击页面下方“本地下载”按钮。
2、耐心等待两秒钟,系统将自动开始下载,本站文件均为高速下载。
3、下载完成后,请查看您浏览器的下载文件夹,找到对应的PDF文件。
4、使用PDF阅读器打开文档,开始阅读学习。
5、使用过程中遇到问题,请联系QQ客服。

本站提供的所有PDF文档、软件、资料等均为网友上传或网络收集,仅供学习和研究使用,不得用于任何商业用途。
本站尊重知识产权,若本站内容侵犯了您的权益,请及时通知我们,我们将尽快予以删除。
  • 手机访问
    微信扫一扫
  • 联系QQ客服
    QQ扫一扫
2022-2025 新资汇 - 参考资料免费下载网站 最近更新浙ICP备2024084428号
关灯 返回顶部
快速回复 返回顶部 返回列表