基于神经网络在路面基层压实参数中的应用
摘要:石灰工业废渣稳定类半刚性材料是高等级公路路面基层材料常见形式之一,根据规范和设计要求可分为含骨料类和不含骨料类。当骨料含量超过50%时,室内重型击实试验劳动量大,并且干密度和含水率曲线不稳定。在已知不含骨料的石灰工业废渣稳定类半刚性材料(即结合料)的最大干密度和最优含水率的基础上,通过结合人工神经网络理论,基于Matlab的BP人工神经网络,建立并编制了含骨料的石灰工业废渣稳定类半刚性材料压实参数(最大干密度和最优含水率)的预测网络模型,经过对网络模型的大量训练、训练函数和传递函数的调整及初始训练数据的规—化,最后建立了6→15→2的网络模型,其网络模型预测结果稳定准确,有一定实际应用价值。
Abstract:The semi-rigid material of lime stabilized industry wastes is commonly used in pavement base of high-grade highway, which contains certain aggregate or none aggregate according to the requirements of standard and design. Generally, the indoor heavy compaction test is not only labor-consuming, but also unable to achieve the precise compaction parameters of the semi-rigid mixture when the aggregate is over 50%. Based on the known compaction parameters of the binder without aggregate and combined with artificial neural network theory, the simulating network model of this type of semi-rigid material's compaction parameters was created by BP network in Matlab. Through large amounts of training, adiustment of training function and transfer function and normalization of initial input data, eventually the 6→15→2 network was established. The results simulated by the network model are correct and stable, which show certain practical application values.
中文标题:
基于神经网络在路面基层压实参数中的应用
Application of Neural Network to Compaction Parameters in Pavement Base
作者:
华明杰1,2,王保田1,2,汪莹鹤1,2
Hua Mingjie1,2,Wang Baotian1,2,Wang Yinghe1,2
作者简介:华明杰,1984年生,男,上海人,硕士研究生,主要从事交通工程中岩土工程测试方面的研究工作。E-maihhuabona@163.com
通讯地址:
1. 河海大学岩土力学与堤坝工程教育部重点实验室, 江苏南京 210098; 2. 河海大学岩土工程科学研究所, 江苏南京 210098
1.KeyLaboratoryofMinistryofEducationforGeo-mechanicsandEmbankmentEngineering,Nanjing210098,Jiangsu,China; 2.InstituteofGeotechnicalEngineering,HoHaiUniversity,Nanjing210098,Jiangsu,China
中图分类号:U416.2
doi:10.3969/j.issn.1007-2993.2009.05.003
出版物:岩土工程技术
收稿日期:2009-06-29
关键词:道路工程,半刚性路面基层,BP人工神经网络,最大干密度,最优含水率
Key words:road engineering,semi-rigid pavement base,Matlab,BP artificial neural network,maximum dry density
文档包含图片数量:图片(0)张
文档包含表格数量:表格(0)个
参考文献:
基金项目:
- 文件大小:
- 345.39 KB
- 下载次数:
- 60
-
高速下载
|
|