强降雨下岩质高边坡变形成因机制研究
摘要:东南亚某在建水电站坝址右岸边坡在开挖过程中,不同高程部位产生了一系列的变形破坏现象,主要表现为裂缝、局部滑塌及滑移,已处于临界失稳状态。基于边坡开挖后的实际工程地质条件、现场地质调查及监测成果,总结了该边坡的变形特征,系统分析了变形破坏现象的成因机制。研究结果表明:边坡开挖后形成临空面,应力场重新分布调整,岩体向临空面回弹,加剧了岩体裂隙的张开度以及贯通程度,为雨水入渗提供了良好的通道,使得F11断层中物质吸水软化,产生不均匀变形,致使裂缝以及局部滑塌出现;后期2次强降雨,加速裂隙向深部延伸发展,迅速软化岩(土)体,压缩蠕变累计量大,滑面贯穿形成蠕滑–拉裂型滑坡。研究为边坡后续开挖及支护提供一定的参考。
Abstract:A series of deformation and failure occurred at different elevations during the excavation process on the right bank slope of a dam site of a hydropower station under construction in Southeast Asia, which were mainly manifested as cracks, partial collapses, and landslides, and the slope was in a critical state of instability. Based on the actual engineering geological conditions, field geological survey and monitoring data after the excavation of the slope, the deformation characteristics of the slope were summarized and the cause mechanism of the deformation and failure was analyzed. The results show that the free surface is formed and the stress field is redistributed after slope excavation, and the rock mass rebound to the free surface, which intensifies the opening and penetration of the rock mass fissures, and provides a good channel for rainwater infiltration. The material in the F11 fault absorbs water and softens, resulting in uneven deformation, which lead to the cracks and partial landslides. The fracture accelerated its development to the deep and the rock (soil) softens rapidly as well as accumulates a large amount of compression creep due to the twice of heavy rains, the creep slip-pull crack type landslide is formed after the slip surface penetrates. This research could provide a certain degree of excavation and support for the later period.
中文标题:
强降雨下岩质高边坡变形成因机制研究
Formation Mechanisms of High Rock-slope Deformation Under Heavy Rainfall
作者:
柳旻1, 2,,周奎1,张超1,姚晨辉1,黄磊1,刘争宏1, 2
Liu Min1, 2,,Zhou Kui1,Zhang Chao1,Yao Chenhui1,Huang Lei1,Liu Zhenghong1, 2
作者简介:柳 旻,男,1988年生,宁夏固原人,工程师,主要从事岩土体稳定性及其工程环境效应方面的研究。E-mail:778738205@qq.com
通讯地址:
1.机械工业勘察设计研究院有限公司,陕西西安 710043 2.陕西省特殊岩土性质与处理重点实验室,陕西西安 710043
1.ChinaJikanResearchInstituteofEngineeringInvestigationsandDesignCo.,Ltd.,Xi’an710043,Shaanxi,China 2.ShaanxiKeyLaboratoryofBehaviorandTreatmentforSpecialRocksandSoils,Xi’an710043,Shaanxi,China
中图分类号:TV 221
doi:10.3969/j.issn.1007-2993.2022.03.001
出版物:岩土工程技术
收稿日期:2021-01-26
网络出版日期:2022-06-02
刊出日期:2022-06-02
关键词:岩质高边坡,变形监测,蠕滑–拉裂破坏,剪切滑移,楔形体平面滑移
Key words:high rock slope,deformation monitoring,creep-tension fracture,shear slip,wedge-shaped body planar slip
文档包含图片数量:图片(13)张
文档包含表格数量:表格(0)个
参考文献:
[1]张御阳,黄润秋,裴向军,等. 楞古水电站碎裂岩质边坡变形破坏模式研究[J]. 工程地质学报,2017,25(2):556-564.
[2]黄志鹏,唐辉明,董志宏,等. 锦屏水电站料场边坡变形特征与破坏机制分析[J]. 长江科学院院报,2015,32(10):65-69.
[3]陈 菲,王 塞,高云建,等. 白格滑坡裂缝区演变过程及其发展趋势分析[J]. 工程科学与技术,2020,52(5):71-78.
[4]张灵熹,陈 筠,刘恋嘉,等. 云盘头滑坡变形破坏机制研究[J]. 长江科学院院报,2019,36(11):27-33. doi: 10.11988/ckyyb.20171097
[5]樊友庆,卢 游,简文星,等. 赣南边坡变形破坏模式与防治对策[J]. 地质科技情报,2017,36(3):205-211.
[6]曾荣福,肖万春,史国坤. 西藏某水电站近坝库岸滑坡稳定性分析与评价[J]. 水利与建筑工程学报,2020,18(4):178-184. doi: 10.3969/j.issn.1672-1144.2020.04.030
[7]焦国木. 大型岩质高边坡稳定性分析与综合设计[J]. 路基工程,2020,210(3):204-208.
[8]姬永尚,陈 晓,赵宇飞,等. F9断层遇水软化对高边坡稳定性的影响分析[J]. 水利科技与经济,2015,21(12):31-35. doi: 10.3969/j.issn.1006-7175.2015.12.010
[9]冉 涛,周洪福,徐 伟,等. 川西交通廊道雅安—泸定段典型岩质边坡失稳模式、破坏机理及防治措施[J]. 自然灾害学报,2020,29(4):200-210.
[10]黄振伟,马力刚,雷 明. 西藏扎拉水电站倾倒边坡工程地质特性研究[J]. 工程科学与技术,2020,52(5):79-88.
[11]黄振伟,肖东佑. 西藏扎拉水电站倾倒变形边坡稳定性分析与评价[J]. 人民长江,2019,50(12):.90-94.
[12]杨建成,邓 琴. 岩质边坡倾倒破坏的非连续变形分析[J]. 水利与建筑工程学报,2016,14(2):118-122. doi: 10.3969/j.issn.1672-1144.2016.02.023
[13]喻永祥,何 伟,李 勇,等. 雪浪山横山寺西侧顺层岩质高边坡变形破坏机理与治理方案分析[J]. 中国地质灾害与防治学报,2020,31(2):33-43.
[14]宋娅芬,陈从新,郑 允,等. 缓倾软硬岩互层边坡变形破坏机制模型试验研究[J]. 岩土力学,2015,36(2):487-494.
[15]刘震涛,周洪福,徐 伟,等. 降雨与开挖联合作用下边坡位移矢量及速率变化分析−以韩江高陂水利枢纽右岸尾水渠边坡为例[J]. 工程地质学报,2020,28(1):122-131.
基金项目:
基金项目:CMEC 专项科技孵化项目( CMEC-KJFH-2018-02);陕西省科技统筹创新工程计划项目( 2016KTZDSF04-05-01);陕西省“三秦学者”创新团队支持计划资助( 2013KCT-13)
- 文件大小:
- 1.55 MB
- 下载次数:
- 60
-
高速下载
|
|