近距平行构造环境中片岩公路隧道大变形机理及判别
摘要:近距平行地质构造环境中的得荣一号隧道开挖掘进至深埋段以来曾多次出现大变形问题,严重影响施工安全并制约工程建设工期。为采取有效防治措施以控制隧道围岩大变形,根据大变形洞段监控量测数据、围岩变形特征及初期支护变形破坏特征,对隧道围岩大变形的受控因素、变形破坏机制进行综合分析。研究结果表明:隧道围岩大变形是在软弱围岩、破碎岩体结构、高地应力、地下水及严重偏压等因素的相互耦合作用下,受工程因素的促发影响,主要由软岩塑性流动变形、塑性剪切滑移变形、陡倾层状弯曲变形和累进性松脱扩展变形机制复合而致。在此基础上,根据现行交通行业规范结合隧道大变形洞段变形特征,总结公路双车道隧道施工现场围岩大变形分级判定综合指标方案,为指导隧道施工设计提供合理、可靠的依据。
Abstract:The large deformation occurred several times since Derong No. 1 tunnel was excavated to its deep buried section, which seriously affected the construction safety and the construction period. In order to take targeted and effective prevention measures to control the large deformation of tunnel surrounding rock, the controlled factors and failure mechanism of the large deformation of surrounding rock are comprehensively analyzed. The results show that the large deformation of tunnel surrounding rock was induced by the coupling mechanism of the plastic flow deformation, plastic shear slip deformation, dipping layered bending deformation and progressive looseness extension deformation, which was promoted by engineering disturbed factors under the mutual coupling effect of weak surrounding rock, crushed rock structure, high crustal stress, groundwater and serious deviatoric pressure. On this basis, according to the current traffic industry norms and combined with the deformation characteristics, it is summarized that the comprehensive index scheme for the large deformation grading of surrounding rock in the construction site of two-lane highway tunnel. It provides a more reasonable and reliable basis for guiding the tunnel construction design.
中文标题:
近距平行构造环境中片岩公路隧道大变形机理及判别
Mechanism and Discrimination of the Large Deformation of Schist Highway Tunnel in Proximal Parallel Tectonic Environment
作者:
李强,黄锋,甘立松
Li Qiang,Huang Feng,Gan Lisong
作者简介:李 强,男,1987生,汉族,四川成都人,硕士研究生,高级工程师,主要从事公路工程地质勘察及岩土体稳定研究工作。E-mail:cdutlq@126.com
通讯地址:
四川省交通勘察设计研究院有限公司,四川成都 610017
SichuanCommunicationSurveying&DesignInstituteCo.,Ltd.,Chengdu610017,Sichuan,China
中图分类号:U 451
doi:10.3969/j.issn.1007-2993.2023.02.010
出版物:岩土工程技术
收稿日期:2021-12-22
修回日期:2022-07-01
录用日期:2022-08-25
刊出日期:2023-04-08
关键词:近距平行构造,公路隧道,软弱破碎围岩,高地应力,大变形,成因机理
Key words:adjacent parallel tectonics,schist highway tunnel,fragmented soft surrounding rock,high geostress,large deformation,formation mechanism
文档包含图片数量:图片(12)张
文档包含表格数量:表格(4)个
参考文献:
[1]陈宗基. 地下巷道长期稳定性的力学问题[J]. 岩石力学与工程学报,1982,1(1):1-20.
[2]ANAGNOSTOU G. A model for swelling rock in tunnelling[J]. Rock Mechanics & Rock Engineering,1993,26(4):307-331.
[3]AYDAN O,AKAGI T,KAWAMOTO T. The squeezing potential of rocks around tunnels: Theory and prediction[J]. Rock Mechanics & Rock Engineering,1993,26(2):137-163.
[4]何满潮,吕晓俭,景海河. 深部工程围岩特性及非线性动态力学设计理念[J]. 岩石力学与工程学报,2002,21(8):1215-1224. doi: 10.3321/j.issn:1000-6915.2002.08.022
[5]李天斌, 孟陆波, 王兰生. 高地应力隧道稳定性及岩爆、大变形灾害防治[M]. 北京: 科学出版社, 2016.
[6]HOEK E,MARINOS P. Predicting tunnel squeezing problems in weak heterogeneous rock masses[J]. Tunnels and Tunneling International,2000,32(11):45-51.
[7]喻 渝. 挤压性围岩支护大变形的机理及判定方法[J]. 世界隧道,1998,(1):46-51.
[8]张祉道. 关于挤压性围岩隧道大变形的探讨和研究[J]. 现代隧道技术,2003,40(2):5-12. doi: 10.3969/j.issn.1009-6582.2003.02.002
[9]刘志春,朱永全,李文江,等. 挤压性围岩隧道大变形机理及分级标准研究[J]. 岩土工程学报,2008,30(5):690-698. doi: 10.3321/j.issn:1000-4548.2008.05.012
[10]李国良,刘志春,朱永全. 兰渝铁路高地应力软岩隧道挤压大变形规律及分级标准研究[J]. 现代隧道技术,2015,52(1):62-68. doi: 10.13807/j.cnki.mtt.2015.01.009
[11]王胜国. 高地应力软岩隧道大变形分级标准研究[J]. 铁道建筑技术,2016,269(4):40-43. doi: 10.3969/j.issn.1009-4539.2016.04.011
[12]李 宁. 挤压性围岩隧道变形分级与控制对策[J]. 铁道建筑,2018,58(5):55-58.
[13]GB/T 50218—2014 工程岩体分级标准 [S]. 北京: 中国计划出版社, 2014.
[14]TB 10003—2016 铁路隧道设计规范 [S]. 北京: 中国铁道出版社, 2016.
[15]JTG 3370.1—2018 公路隧道设计规范(第一册 土建工程) [S]. 北京: 人民交通出版社, 2018.
基金项目:
- 文件大小:
- 2.7 MB
- 下载次数:
- 60
-
高速下载
|
|