返回列表 发布新帖

[工业技术] 高温后预制裂纹花岗岩损伤特性研究

21 0
admin 发表于 2025-1-17 06:00 | 查看全部 阅读模式

高温后预制裂纹花岗岩损伤特性研究
摘要:温度是影响岩石物理力学性质的重要因素之一。研究高温对岩石力学性质演变规律及损伤破坏机制的影响,对深部岩体工程具有重要意义。基于PFC颗粒流数值模拟方法,建立了含预制裂纹花岗岩数值模型,模拟了不同温度(20 ℃,200 ℃,400 ℃,600 ℃,800 ℃)处理后含预制裂纹花岗岩单轴压缩试验。研究结果表明,含预制裂纹花岗岩的峰值强度和弹性模量随着热处理温度的升高显著降低,而峰值应变呈现增加趋势;不同热处理温度造成的热损伤程度不同,导致预制裂纹花岗岩宏观破坏模式存在差异;热处理温度不超过600 ℃时,花岗岩均沿着预制裂纹两端发生破坏;当热处理温度达到800 ℃,热损伤成为花岗岩力学破坏模式的主导因素,且破碎程度显著增加。研究成果有助于了解高温作用下的岩石损伤演化机理,可为深部地下工程提供借鉴。

Abstract:Temperature is one of the important factors affecting the physical and mechanical properties of rock. The study of the influence of high temperature on the evolution of rock mechanical properties and damage mechanism is of great significance in the construction of deep rock mass engineering. Based on the PFC particle flow numerical simulation method, the uniaxial compression experiments of pre-existing flaws granite treated at different temperatures (20 ℃,200 ℃,400 ℃,600 ℃,800 ℃) were simulated. The results show that the peak strength and elastic modulus of granite decrease significantly with the increase of heat treatment temperature, while the peak strain increases. The degree of thermal damage caused by different heat treatment temperatures varies, leading to differences in macroscopic failure modes of prefabricated fractured granite. When the heat treatment temperature does not exceed 600 ℃, the granite undergoes failure along both ends of the prefabricated crack; When the heat treatment temperature reaches 800 ℃, thermal damage becomes the dominant factor in the mechanical failure mode of granite, and the degree of fragmentation significantly increases. The research results contribute to understanding the mechanism of rock damage evolution under high temperature, and can provide reference for deep underground engineering.

中文标题:
高温后预制裂纹花岗岩损伤特性研究
Damage Characteristics of Prefabricated Fractured Granite after High Temperature

作者:
王伏春,黄守国,黄聪
Wang Fuchun,Huang Shouguo,Huang Cong
作者简介:王伏春,男,1980年生,汉族,江西遂川人,硕士,高级工程师,主要从事岩土工程勘察、设计、施工。E-mail:1542852877@qq.com
通讯地址:
中南勘察基础工程有限公司,湖北武汉 430081
CentralSouthExploration&FoundationEngineeringCo.,Ltd.,Wuhan430081,Hubei,China

中图分类号:TU 452
doi:10.3969/j.issn.1007-2993.2023.04.007
出版物:岩土工程技术
收稿日期:2022-04-22
刊出日期:2023-08-08


关键词:花岗岩,高温处理,预制裂纹,颗粒流,热损伤
Key words:granite,high temperature treatment,prefabricated crack,particle flow,thermal damage
文档包含图片数量:图片(9)张
文档包含表格数量:表格(2)个

参考文献:
[1]MARDOUKHI A,MARDOUKHI Y,HOKKA M,et al. Effects of heat shock on the dynamic tensile behavior of granitic rocks[J]. Rock Mechanics and Rock Engineering,2017,50(5):1171-1182. doi:  10.1007/s00603-017-1168-4
[2]EDOARDO R,KANT M A,CLAUDIO M,et al. The effects of high heating rate and high temperature on the rock strength: feasibility study of a thermally assisted drilling method[J]. Rock Mechanics and Rock Engineering,2018,51(9):2957-2964. doi:  10.1007/s00603-018-1507-0
[3]YANG S Q,HU B. Creep and longterm permeability of a red sandstone subjected to cyclic loading after thermal treatments[J]. Rock Mechanics and Rock Engineering,2018,51:2981-3004. doi:  10.1007/s00603-018-1528-8
[4]方新宇,许金余,刘 石,等. 高温后花岗岩的劈裂试验及热损伤特性研究[J]. 岩石力学与工程学报,2016,35(S1):2687-2694. doi:  10.13722/j.cnki.jrme.2014.1631
[5]BAISCH S,WEIDLER R,VÖRÖS R,et al. Induced seismicity during the stimulation of a geothermal HFR reservoir in the Cooper Basin[J]. Bulletin of the Seismological Society of America,2006,96(6):2242-2256. doi:  10.1785/0120050255
[6]郤保平,吴阳春,王 帅,等. 青海共和盆地花岗岩高温热损伤力学特性试验研究[J]. 岩石力学与工程学报,2020,39(1):69-83. doi:  10.13722/j.cnki.jrme.2019.0182
[7]张志镇,高 峰,徐小丽. 花岗岩力学特性的温度效应试验研究[J]. 岩土力学,2011,32(8):2346-2352. doi:  10.3969/j.issn.1000-7598.2011.08.017
[8]郭平业,卜墨华,李清波,等. 岩石有效热导率精准测量及表征模型研究进展[J]. 岩石力学与工程学报,2020,39(10):1983-2013.
[9]JANSEN D P,CARLSON S R,YOUNG R P,et al. Ultrasonic imaging and acoustic emission monitoring of thermally induced microcracks in Lac du Bonnet granite[J]. Journal of Geophysical Research:Solid Earth,1993,98(B12):22231-22243. doi:  10.1029/93JB01816
[10]ZHAO Y S,MENG Q R,KANG T H,et al. Micro-CT experimental technology and micro-investigation on thermal fracturing characteristics of granite[J]. Chinese Journal of Rock Mechanics and Engineering,2008,27:28-34.
[11]CHEN S,YANG C,WANG G. Evolution of thermal damage and permeability of Beishan granite[J]. Applied Thermal Engineering,2017,110:1533-1542. doi:  10.1016/j.applthermaleng.2016.09.075
[12]SUN Q,ZHANG W,XUE L,et al. Thermal damage pattern and thresholdsof granite[J]. Environmental Earth Sciences,2015,74(3):2341-2349. doi:  10.1007/s12665-015-4234-9
[13]YANG S Q,RANJITH P G,JING H W,et al. An experimental investigation on thermal damage and failure mechanical behavior of granite after exposure to different high temperature treatments[J]. Geothermics,2017,65:180-197. doi:  10.1016/j.geothermics.2016.09.008
[14]CHEN Y L,NI J,SHAO W,et al. Experimental study on the influence of temperature on the mechanical properties of granite under uniaxial compression and fatigue loading[J]. International Journal of Rock Mechanics & Mining Sciences,2012,56(15):62-66.
[15]ZHAO Z H,XU H R,WANG J,et al. Auxetic behavior of Beishan granite after thermal treatment: A microcracking perspective[J]. Engineering Fracture Mechanics,2020,231:101017.
[16]SUN W,WU S C,XU X. Mechanical behavior of Lac du Bonnet granite after high-temperature treatment using bonded-particle model and moment tensor[J]. Computers and Geotechnics,2021,135:104132. doi:  10.1016/j.compgeo.2021.104132
[17]周 喻,吴顺川,许学良,等. 岩石破裂过程中声发射特性的颗粒流分析[J]. 岩石力学与工程学报,2013,32(5):951-959.
[18]宿 辉,朱 谊,刘世伟,等. 基于颗粒流热固耦合模型的片麻花岗岩损伤特性分析[J]. 科学技术与工程,2020,20(5):2009-2013. doi:  10.3969/j.issn.1671-1815.2020.05.045
[19]LI M,LIU X. Effect of thermal treatment on the physical and mechanical properties of sandstone: insights from experiments and simulations[J]. Rock Mechanics and Rock Engineering,2022,55:3171-3194. doi:  10.1007/s00603-022-02791-1
[20]HUANG Y H,YANG S Q,BU Y S. Effect of thermal shock on the strength and fracture behavior of pre-flawed granite specimens under uniaxial compression[J]. Theoretical and Applied Fracture Mechanics,2020,106(2):102-474.
[21]ZHAO Z H,LIU Z N,PU H,et al. Effect of thermal treatment on brazilian tensile strength of granites with different grain size distributions[J]. Rock Mechanics and Rock Engineering,2018,51(4):1293-1303. doi:  10.1007/s00603-018-1404-6
[22]SHI C,YANG W K,YANG J X,et al. Calibration of micro-scaled mechanical parameters of granite based on a bonded-particle model with 2D particle flow code[J]. Granular Matter,2019,21(2):38-51. doi:  10.1007/s10035-019-0889-3
[23]ZHAO Z H. Thermal influence on mechanical properties of granite: A microcracking perspective[J]. Rock Mechanics and Rock Engineering,2016,49(11):747-762.
[24]SAKA B L,RANJITH P G,RATHNAWEERA T D,et al. Quantification of thermally-induced microcracks in granite using X-ray CT imaging and analysis[J]. Geothermics,2019,81(11):152-167.
[25]TIAN W L,YANG S Q,WANG J G,et al. Numerical simulation of permeability evolution in granite after thermaltreatment[J]. Computers and Geotechnics,2020,126(14):103-705.
[26]YANG S Q,TIAN W L,ELSWORTH D,et al. An experimental study of effect of high temperature on the permeability evolution and failure response of granite under triaxial compression[J]. Rock Mechanics and Rock Engineering,2020,53(11):4403-4427.
[27]LI Q,YIN T B,LI X B,et al. Effects of rapid cooling treatment on heated sandstone: a comparison between water and liquid nitrogen cooling[J]. Bulletin of Engineering Geology and the Environment,2020,79(2):313-327.

基金项目:


2025-1-16 20:52 上传
文件大小:
4.76 MB
下载次数:
60
高速下载
【温馨提示】 您好!以下是下载说明,请您仔细阅读:
1、推荐使用360安全浏览器访问本站,选择您所需的PDF文档,点击页面下方“本地下载”按钮。
2、耐心等待两秒钟,系统将自动开始下载,本站文件均为高速下载。
3、下载完成后,请查看您浏览器的下载文件夹,找到对应的PDF文件。
4、使用PDF阅读器打开文档,开始阅读学习。
5、使用过程中遇到问题,请联系QQ客服。

本站提供的所有PDF文档、软件、资料等均为网友上传或网络收集,仅供学习和研究使用,不得用于任何商业用途。
本站尊重知识产权,若本站内容侵犯了您的权益,请及时通知我们,我们将尽快予以删除。
  • 手机访问
    微信扫一扫
  • 联系QQ客服
    QQ扫一扫
2022-2025 新资汇 - 参考资料免费下载网站 最近更新浙ICP备2024084428号
关灯 返回顶部
快速回复 返回顶部 返回列表