颗粒材料粘滑现象及其物理机制的试验研究
摘要:颗粒材料系统在剪切过程中存在应力突变的情况,为了探究颗粒材料在剪切过程中的宏观力学响应与其细观参数的内在联系,通过室内直剪试验,研究了颗粒材料系统在受压剪作用下的粘滑(stick-slip)行为。将玻璃微珠作为颗粒材料进行了不同正应力下的直剪试验,并引入率态摩擦模型(RSF)对试验结果进行了定量分析,通过强度阶跃试验得到了率态摩擦模型相关参数。试验结果表明:(1)不同正应力下的粘滑曲线变化趋势基本相同,并呈现周期性的规律,但粘滑导致的应力降和周期随正应力的减小而减小;(2)在施加的压力范围内,通过计算得到其刚度比κ均小于1,且κ随正应力的增大而减小,这说明该颗粒材料满足失稳判据,试验现象与理论预测相符。成果为研究地震发生机理提供了思路,据此可推测断层的粘滑失稳及地震发生是由于断层面的滑移速度瞬时改变引起的,κ值越小其峰值粘滑速率越大,同时产生的应力降和粘滑周期越大。
Abstract:In order to explore the internal relationship between the macro mechanical response of granular materials in the shear process and their micro parameters, the stick-slip behavior of granular materials under compression and shear was studied through indoor direct shear test. Glass beads were used as granular materials to conduct direct shear test under different normal stresses, and the rate state friction model (RSF) was introduced to quantitatively analyze the test results, and the relevant parameters of the rate state friction model were obtained through the strength step test. The experimental results show that: (1) the variation trend of the stick-slip curve under different normal stresses is basically the same and shows a periodic pattern, but the stress drop and period caused by stick-slip decrease with the decrease of normal stress; (2) within the applied pressure range, the stiffness ratio κ is calculated to be less than 1, and κ decreases with the increase of normal stress. This indicates that the granular material meets the instability criterion, and the experimental phenomenon is consistent with theoretical predictions. This provides ideas for studying the mechanism of earthquake occurrence, and based on this, it can be inferred that the stick-slip instability of faults and the cause of earthquakes are caused by the instantaneous change of slip velocity at the fault plane. The smaller the κ value, the greater the peak stick-slip rate, and the greater the stress drop and stick-slip period generated.
中文标题:
颗粒材料粘滑现象及其物理机制的试验研究
Experimental Study on the Stick-slip Phenomenon in Granular Materials and Its Physical Mechanism
作者:
刘建生1, 2,,熊文勇1, 2,邓翔浩1, 2,傅力3,童立红3,,
Liu Jiansheng1, 2,,Xiong Wenyong1, 2,Deng Xianghao1, 2,Fu Li3,Tong Lihong3,,
作者简介:刘建生,男,1977年生,汉族,江西萍乡人,大学本科,高级工程师,从事公路工程管理。E-mail:724641276@qq.com通讯作者:童立红,男,1988年生,汉族,安徽淮南人,博士,教授,从事土动力学相关研究。E-mail:lhtong@ecjtu.edu.cn
通讯地址:
1.江西省交通工程集团有限公司,江西南昌 330028 2.江西省桥梁智能养护工程技术研究中心,江西南昌 330028 3.华东交通大学土木建筑学院岩土工程研究所,江西南昌 330013
1.JiangxiTransporationEngineeringGroupCo.,Ltd.,Nanchang330028,Jiangxi,China 2.JiangxiIntelligentMaintenanceEngineeringTechnologyResearchCenterofBridge,Nanchang330028,Jiangxi,China 3.InstituteofGeotechnicalEngineering,SchoolofCivilEngineeringandArchitecture,EastChinaJiaotongUniversity,Nanchang330013,Jiangxi,China
中图分类号:TU 43
doi:10.3969/j.issn.1007-2993.2023.04.013
出版物:岩土工程技术
收稿日期:2022-05-15
修回日期:2022-07-31
录用日期:2022-12-09
刊出日期:2023-08-08
关键词:颗粒材料粘滑现象,直剪试验,速率状态摩擦模型,失稳破坏模式
Key words:particle stick-slip phenomenon,direct shear test,rate state friction model,instable destruction mode
文档包含图片数量:图片(10)张
文档包含表格数量:表格(0)个
参考文献:
[1]HANOTIN C,KIESGEN D R S,MARCHAL P,et al. Vibration-induced liquefaction of granular suspensions[J]. Physical Review Letters,2012,108(19):198301. doi: 10.1103/PhysRevLett.108.198301
[2]KOU B,CAO Y,LI J,et al. Granular materials flow like complex fluids[J]. Nature,2017,551(7680):360-363. doi: 10.1038/nature24062
[3]NGUYEN V B,DARNIGE T,BRUAND A,et al. Creep and fluidity of a real granular packing near jamming[J]. Physical Review Letters,2011,107(13):138303. doi: 10.1103/PhysRevLett.107.138303
[4]YANG J,LUO X D. Exploring the relationship between critical state and particle shape for granular materials[J]. Journal of the Mechanics and Physics of Solids,2015,84:196-213. doi: 10.1016/j.jmps.2015.08.001
[5]FU R,HU X,YANG B,et al. An insight into the meso-scale topological structure nature of granular materials subjected to quasi-static shearing[J]. Computers and Geotechnics,2021,137:104257. doi: 10.1016/j.compgeo.2021.104257
[6]TOURNAT V,ZAITSEV V,GUSEV V,et al. Probing weak forces in granular media through nonlinear dynamic dilatancy: clapping contacts and polarization anisotropy[J]. Physical Review Letters,2004,92(8):085502. doi: 10.1103/PhysRevLett.92.085502
[7]NASUNO S,KUDROLLI A,GOLLUB J P. Friction in granular layers: hysteresis and precursors[J]. Physical Review Letters,1997,79(5):949-952. doi: 10.1103/PhysRevLett.79.949
[8]DALTON F,CORCORAN D. Earthquake behaviour and large-event predictability in a sheared granular stick-slip system[J]. ArXiv Preprint Physics,2002:0211060.
[9]DE ARCANGELIS L, CIAMARRA M P, LIPPIELLO E, et al. In micromechanics and statistics of slipping events in a granular seismic fault model[C]. Journal of Physics: Conference Series, IOP Publishing, 2011.
[10]王怡舒,刘斯宏,沈超敏,等. 接触摩擦对颗粒材料宏细观力学特征和能量演变规律的影响[J]. 岩石力学与工程学报,2022,41(2):412-422. doi: 10.13722/j.cnki.jrme.2021.0264
[11]FERDOWSI B,GRIFFA M,GUYER R,et al. Microslips as precursors of large slip events in the stick‐slip dynamics of sheared granular layers: A discrete element model analysis[J]. Geophysical Research Letters,2013,40(16):4194-4198. doi: 10.1002/grl.50813
[12]GAO K,EUSER B J,ROUGIER E,et al. Modeling of stick-slip behavior in sheared granular fault gouge using the combined finite-discrete element method[J]. Journal of Geophysical Research:Solid Earth,2018,123(7):5774-5792. doi: 10.1029/2018JB015668
[13]GAO K,GUYER R,ROUGIER E,et al. From stress chains to acoustic emission[J]. Physical Review Letters,2019,123(4):048003. doi: 10.1103/PhysRevLett.123.048003
[14]DIETERICH J H. Time-dependent friction and the mechanics of stick-slip[J]. Rock Friction and Earthquake Prediction,1978:790-806.
[15]RUINA A. Slip instability and state variable friction laws[J]. Journal of Geophysical Research: Solid Earth,1983,88(B12):10359-10370. doi: 10.1029/JB088iB12p10359
[16]GU JC,RICE J R,RUINA A L,et al. Slip motion and stability of a single degree of freedom elastic system with rate and state dependent friction[J]. Journal of the Mechanics and Physics of Solids,1984,32(3):167-196. doi: 10.1016/0022-5096(84)90007-3
[17]KILGORE B D,BLANPIED M L,DIETERICH J H. Velocity dependent friction of granite over a wide range of conditions[J]. Geophysical Research Letters,1993,20(10):903-906. doi: 10.1029/93GL00368
[18]LEEMAN J,SAFFER D,SCUDERI M,et al. Laboratory observations of slow earthquakes and the spectrum of tectonic fault slip modes[J]. Nature communications,2016,7(1):11104. doi: 10.1038/ncomms11104
[19]SCUDERI M,MARONE C,TINTI E,et al. Precursory changes in seismic velocity for the spectrum of earthquake failure modes[J]. Nature geoscience,2016,9(9):695-700. doi: 10.1038/ngeo2775
[20]童立红,温斌强,徐长节,等. 基于率态模型的颗粒材料剪切强度理论[J]. 中国科学:技术科学,2022,52(3):489-498.
[21]朱 遥,刘 春,刘 辉,等. 颗粒形态对砂土抗剪强度影响的试验和离散元数值模拟[J]. 工程地质学报,2020,28(3):490-499. doi: 10.13544/j.cnki.jeg.2019-288
[22]BRACE W F,BYERLEE J D. Stick-slip as a mechanism for earthquakes[J]. Science,1996,153(3739):990-992.
[23]JOHNSON T,WU F T,SCHOLZ C H. Source parameters for stick-slip and for earthquakes[J]. Science,1973,179(4070):278-280. doi: 10.1126/science.179.4070.278
基金项目:
基金项目:江西省交通运输厅科技项目(2021H0004);江西省教育厅课题(GJJ210618);江西省科技合作专项项目(20212BDH81034)
- 文件大小:
- 1.52 MB
- 下载次数:
- 60
-
高速下载
|
|