结构性黄土的小应变刚度特性研究
摘要:由于存在以粉粒为主的土骨架和大量孔隙形成的架空结构以及粒间胶结作用,原状黄土表现出显著的结构特性。为研究结构性对黄土小应变刚度的影响,以典型的结构性黄土为研究对象,利用固定–自由型Stokoe共振柱试验系统,开展了原状与重塑黄土试样在不同围压下的共振柱试验。结果表明,在小应变范围内,原状与重塑黄土的刚度特性均表现出非线性特征,其剪切模量–剪应变(G-γ)关系可以采用Hardin-Drnevich双曲线模型进行拟合。结构性显著控制黄土的小应变刚度特性,表现在原状土相较于重塑土具有更高的剪切模量、更低的刚度对围压的敏感性。研究还对结构性对黄土小应变刚度的控制作用开展了定量评价,并与包括伦敦黏土、渥太华砂在内的多种黏性土、砂土进行了比较,加深了对结构性黄土力学行为的理解,为相关工程设计提供技术参考。
Abstract:Because of the soil skeleton containing dominant silt as well as interparticle cementation, the natural loess behaves in a structured way. To study the influence of structural properties on the small-strain stiffness of loess, resonant column tests were performed on typical natural and remolded loess under different confining pressures. The results showed that both the original and remolded loess exhibit a nonlinear stiffness characteristic within the small strain range and their shear modulus-shear strain (G-γ) relationships can be fitted by the Hardin-Drnevich hyperbolic model. Structural properties were found to significantly control the small-strain stiffness properties of loess, as exemplified by a higher shear modulus and a lower sensitivity of the maximum shear modulus to confining pressure of natural loess compared to the case of remolded soil. In addition, this study quantified the effect of structure on the small strain stiffness of loess and makes comparisons with some well-studied sands and clays (including London clay and Ottawa sand). This research enhanced the understanding of the mechanical behavior of structured loess and can provide technical reference for related engineering design.
中文标题:
结构性黄土的小应变刚度特性研究
Small Strain Stiffness Property of Structured Loess
作者:
刘曙光
Liu Shuguang
作者简介:刘曙光,男,1983年生,汉族,河南开封人,大学本科,高级工程师,从事工程地质工作。E-mail:252839949@qq.com
通讯地址:
河南省水利勘测设计研究有限公司,河南郑州 450016
HenanWater&PowerEngineeringConsultingCo.,Ltd.,Zhengzhou450016,Henan,China
中图分类号:TU43
doi:10.3969/j.issn.1007-2993.2024.05.018
出版物:岩土工程技术
收稿日期:2023-08-04
网络出版日期:2024-10-09
刊出日期:2024-10-09
关键词:黄土,结构性,小应变刚度,剪切模量,共振柱
Key words:loess,structure,small strain stiffness,shear modulus,resonant column
文档包含图片数量:图片(7)张
文档包含表格数量:表格(2)个
参考文献:
[1]陈默涵, 罗云海, 王晓燕, 等. 黄土地基水分入渗规律试验研究[J]. 岩土工程技术,2023,37(1):95-99. doi: 10.3969/j.issn.1007-2993.2023.01.017
[2]邢玉东, 朱浮声, 王常明. 辽西黄土的物质组成与微观结构特征[J]. 岩土工程技术,2008(3):155-159. doi: 10.3969/j.issn.1007-2993.2008.03.012
[3]宋献华. 一种评价黄土及黄土地基湿陷敏感性的新方法[J]. 岩土工程技术,2019,33(5):249-254. doi: 10.3969/j.issn.1007-2993.2019.05.001
[4]王弘起, 孙杰龙, 李大卫, 等. 不同含水率高填方黄土抗剪强度试验研究[J]. 岩土工程技术,2022,36(6):507-510. doi: 10.3969/j.issn.1007-2993.2022.06.015
[5]高国瑞. 中国黄土的微结构[J]. 科学通报,1980(20):945-948.
[6]方祥位, 欧益希, 李春海, 等. 浸湿对原状Q2黄土微观结构与力学性质的影响研究[J]. 岩土力学,2015,36(S2):111-117.
[7]张 杰, 张常亮, 李 萍, 等. 结构性黄土压缩特性的微观非连续变形分析[J]. 长江科学院院报,2021,38(5):123-130. doi: 10.11988/ckyyb.20200506
[8]LIU X Y, ZHANG X W, KONG L W, et al. Effect of cementation on the small-strain stiffness of granite residual soil[J]. Soils and Foundations,2021(8):520-532.
[9]HARDIN B O, BLACK W L. Sand stiffness under various triaxial stresses[J]. Soil Mechanics and Foundation Division Journal,1966,92(2):27-42. doi: 10.1061/JSFEAQ.0000865
[10]张先伟, 孔令伟, 李宏程, 等. 津巴布韦泥岩残积土的工程地质特性及其微观机制[J]. 工程地质学报,2018,26(6):1424-1432.
[11]GB/T 50123—1999 土工试验方法标准[S]. 北京: 中国计划出版社, 2019.
[12]STOKOE K H, DARENDELI M B, ANDRUS R D, et al. Dynamic soil properties: laboratory, field and correction studies [C]// Proceeding of 2nd International Conference on Earthquake Geotechnical Engineering, Portugal: Portuguese Society for Geotechnique, 1999.
[13]RAMPELLO S, SILVESTRI F, VIGGIANI G. The dependence of small strain stiffness on stress state and history of fine-grained soils: the example of Vallericca clay [C]// Proceeding of International Symposium on Pre-failure Deformation of Geomaterials, Japan: Japanese Society of Soil Mechanics and Foundation Engineering, 1994.
[14]PENNINGTON D S, NASH D F T, LINGS M L. Anisotropy of G0 shear stiffness in Gault Clay[J]. Géotechnique,1997,47(3):391-398.
[15]YOUN J U, CHOO Y W, KIM D S. Measurement of small-strain shear modulus Gmax of dry and saturated sands by bender element, resonant column, and torsional shear tests[J]. Canadian Geotechnical Journal,2008,45(10):1426-1438. doi: 10.1139/T08-069
[16]FERNANDEZ A L, SANTAMARINA J C. Effect of cementation on the small-strain parameters of sands[J]. Canadian Geotechnical Journal,2001,38(1):191-199. doi: 10.1139/t00-081
[17]WANG Y, NG C W W. Effects of stress paths on the small-strain stiffness of completely decomposed granite[J]. Canadian Geotechnical Journal,2005,42(4):1200-1211. doi: 10.1139/t05-009
[18]CHANG T S, WOODS R D. Effect of confining pressure on shear modulus of cemented sand[J]. Developments in Geotechnical Engineering,1987,43:193-208.
[19]OKEWALE I A. Effects of weathering on the small strain behaviour of decomposed volcanic rocks[J]. Journal of GeoEngineering,2019,14(2):97-107.
基金项目:
- 文件大小:
- 1.31 MB
- 下载次数:
- 60
-
高速下载
|
|