自平衡试桩理论解析转换方法及工程应用
摘要:提出一种基桩承载力自平衡测试的解析转换方法,采用有限差分法建立上、下段桩各微段控制方程,通过编程求解上、下桩身各微段处的内力及变位量,代入精确转换公式,将自平衡试桩结果转换为类似传统静载测试荷载(Q)-位移(s)曲线形式,并求解其极限承载力。结合广西来宾裕达梧桐苑3根钻孔灌注桩自平衡法测试工程,应用该解析转换方法对测试结果进行转换。研究表明,3根试桩内力均表现为离加载端较近的土层承担的荷载较大,轴力由加载端向两端衰减程度逐渐减小,且侧摩阻力变化特性呈现双曲线分布。就单桩承载力而言,简化转换方法偏于保守,而解析转换方法考虑了桩侧各层土的性质差异,相比精度可提高约12%。该解析转换方法能准确地反映出上、下段桩身内力分布规律以及桩侧土层承载特性,且可以高效准确地实现承载力的转换,在基桩承载力自平衡测试工程领域具有广泛应用前景。
Abstract:An analytical conversion method for self-balanced test of foundation pile was proposed. The finite difference method was used to establish the control equations for each micro-section of the upper and lower piles, and the internal forces and displacements at each micro-section of the upper and lower piles can be obtained by programmed solution, which can be substituted into the exact conversion formula to convert the self-balanced test pile results into the form of the load (Q) - displacement (s) curves similar to those of the traditional static test and to solve the ultimate bearing capacity. This analytical conversion method was applied to convert the test results in conjunction with the test project of self-balanced method for three drilled piles in Yuda Wutong Court, Laibin, Guangxi. The internal forces of the three test piles all show that the soil layer closer to the loading end bears a larger load, the axial force gradually decreases from the loading end to both ends, and the change characteristics of the lateral resistances show a hyperbolic distribution. In terms of single pile bearing capacity, the simplified conversion method is conservative, while the analytical conversion method takes into account the differences in the characteristics of the soil layers on the pile side, and the accuracy can be improved by about 12% compared to the simplified conversion method. The analytical conversion method can accurately reflect the distribution law of internal force of upper and lower pile body and the bearing characteristics of soil layer on the pile side, and can efficiently and accurately realize the conversion of bearing capacity, which is widely used in the field of self-balanced test engineering of pile foundation bearing capacity.
中文标题:
自平衡试桩理论解析转换方法及工程应用
Analysis Conversion Method of Self-balanced Test Pile and Engineering Application
作者:
杨迪1,,白露2,,桑润辉2,江杰2,,
Yang Di1,,Bai Lu2,,Sang Runhui2,Jiang Jie2,,
作者简介:杨 迪,男,1991年生,汉族,河南南阳人,学士,工程师,主要从事城市地下工程。E-mail:1623189424@qq.com通讯作者:江 杰,男,1979年生, 汉族,湖北麻城人,博士,教授,主要从事复杂受力环境的桩基础理论与应用方面的教学与研究工作。 E-mail: jie_jiang001@126.com
通讯地址:
1.中铁建设集团南方工程有限公司,广东广州 511458 2.广西大学土木建筑工程学院,广西南宁 530004
1.ChinaRailwayConstructionGroupSouthEngineeringCo.,Ltd.,Guangzhou511458,Guangdong,China 2.CollegeofCivilEngineeringandArchitecture,GuangxiUniversity,Nanning530004,Guangxi,China
中图分类号:TU473.1
doi:10.3969/j.issn.1007-2993.2024.05.002
出版物:岩土工程技术
收稿日期:2023-06-23
修回日期:2023-09-16
录用日期:2023-12-25
网络出版日期:2024-10-09
刊出日期:2024-10-09
关键词:自平衡试桩,解析转换法,工程应用,极限承载力
Key words:self-balanced test pile,analytical conversion method,engineering application,ultimate bearing
文档包含图片数量:图片(9)张
文档包含表格数量:表格(3)个
参考文献:
[1]朱建民, 殷开成, 龚维明, 等. 中美欧自平衡静载试验标准若干问题探讨[J]. 岩土力学,2020,41(10):3491-3499.
[2]XING H, WU J, LUO Y. Field tests of large-diameter rock-socketed bored piles based on the self-balanced method and their resulting load bearing characteristics[J]. European Journal of Environmental and Civil Engineering,2019,23(12):1535-1549. doi: 10.1080/19648189.2017.1359111
[3]欧孝夺, 白 露, 吕政凡, 等. 自平衡试桩Q-s曲线理论解析方法研究[J]. 铁道科学与工程学报,2022,19(2):399-408.
[4]OSTERBERG J. New device for load testing driven piles and drilled shafts separates friction and end bearing[J]. Piling and Deep Foundations,1989,1(6):421-427.
[5]龚成中, 何春林, 龚维明, 等. 基于自平衡试桩法大直径嵌岩桩尺寸效应分析[J]. 岩土力学,2012,33(8):2403-2407. doi: 10.3969/j.issn.1000-7598.2012.08.025
[6]JGJ/T 403—2017 建筑基桩自平衡静载试验技术规程[S].
[7]OU X, BAI L, JIANG J, et al. Research on analytical conversion method of self-balanced test pile results. [J] European Journal of Environmental and Civil Engineering, 2021, 26(14), 7209–7225.
[8]欧孝夺, 白 露, 吕政凡, 等. 黏土地基中自平衡试桩Q-s曲线解析转换方法与室内模型试验研究[J]. 中南大学学报(自然科学版),2022,53(2):631-642.
[9]XI X Z, CHEN L Z, LIU W. An analytical solution to transform O-cell pile test data into conventional load-settlement curve[C]. GeoShanghai 2010 International Conference, 2010: 192-199.
[10]SEOL H, JEONG S. Load-settlement behavior of rock-socketed drilled shafts using Osterberg-Cell tests[J]. Computers and Geotechnics, 2009, 36(7): 1134-1141.
[11]SEOL H, JEONG S, KIM Y. Load transfer analysis of rock-socketed drilled shafts by coupled soil resistance[J]. Computers and Geotechnics, 2009, 36(3): 446-453.
[12]NIAZI FAWAD S, MAYNEPAUL W. Axial pile response of bidirectional O-cell loading from modified analytical elastic solution and downhole shear wave velocity[J]. NRC Research Press, 2014, 51(11):1284-1302.
[13]KIM S R, CHUNG S G. Equivalent head-down load vs. Movement relationships evaluated from bi-directional pile load tests[J]. Ksce Journal of Civil Engineering, 2012, 16(7): 1170-1177.
[14]LEE J S, PARK Y H. Equivalent pile load-head settlement curve using a bi-directional pile load test[J]. Computers and Geotechnics, 2008, 35(2): 124-133.
[15]MISSION J L C, KIM H J. Design charts for elastic pile shortening in the equivalent top-down load-settlement curve from a bidirectional load test[J]. Computers and Geotechnics,2011,38(2):167-177. doi: 10.1016/j.compgeo.2010.11.001
[16]KRAFT L M, RAY R P, KAGAWA T. Theoretical t-z curves[J]. Journal of the Geotechnical Engineering Division, ASCE,1981,107(11):1543-1561. doi: 10.1061/AJGEB6.0001207
[17]江 杰, 王顺苇, 欧孝夺, 等. 黏土地基中桩顶扭矩–竖向荷载加载路径下单桩承载特性分析[J]. 岩土力学,2020,41(11):3573-3582.
[18]江 杰, 王顺苇, 欧孝夺, 等. 膨胀土地基中单桩受扭非线性分析[J]. 工程力学,2020,37(11):219-227. doi: 10.6052/j.issn.1000-4750.2020.04.0243
[19]RANDOLPH M F, WROTH C P. Analysis of deformation of vertically loaded piles[J]. Journal of the Geotechnical Engineering Division,1978,104(12):1465-1488. doi: 10.1061/AJGEB6.0000729
基金项目:
基金项目:国家自然科学基金资助项目(52068004);广西重点研发计划项目(AB19245018)
- 文件大小:
- 1.16 MB
- 下载次数:
- 60
-
高速下载
|
|