文档名:基于多维云概念嵌入的变分图自编码器研究
摘要:变分图自编码器是图嵌入研究中重要的深度学习模型,但存在着先验正态分布缺陷、训练过程中容易出现后验塌陷等问题.本文从建立云概念空间与隐空间的映射关系入手,引入云模型数字特征对网络中的节点进行不确定性概念表示,设计了一种基于多维云模型的变分图自编码器(VariationalGraphAutoencoderbasedonMultidimensionalCloudModel,MCM-VGAE).该模型实现了隐空间的多维云概念嵌入及相应的漂移性损失度量,将先验分布扩展为泛正态分布,利用多维正向云发生器及云包络带修正采样算法实现了重参数化过程,有效缓解了后验塌陷现象.在应用效果上,模型在多类型数据集上的链路预测、节点聚类、图嵌入可视化实验表现均优于基准模型,进一步说明了方法的普适有效性.
作者:代劲 张奇瑞 王国胤 彭艳辉 涂盛霞 Author:DAIJin ZHANGQi-rui WANGGuo-ying PENGYan-hui TUSheng-xia
作者单位:重庆邮电大学计算智能重庆市重点实验室,重庆400065;重庆邮电大学软件工程学院,重庆400065重庆邮电大学软件工程学院,重庆400065重庆邮电大学计算智能重庆市重点实验室,重庆400065;重庆邮电大学旅游多源数据感知与决策技术文化和旅游部重点实验室,重庆400065华为技术有限公司,广东深圳518129
刊名:电子学报 ISTICEIPKU
Journal:ActaElectronicaSinica
年,卷(期):2023, 51(12)
分类号:TP18
关键词:变分图自编码器 图嵌入 多维云模型 概念嵌入 链路预测
Keywords:variationalgraphautoencoder graphembedding multidimensionalcloudmodel conceptembedding linkprediction
机标分类号:TP368.3TP181O157.5
在线出版日期:2024年3月13日
基金项目:基于多维云概念嵌入的变分图自编码器研究[
期刊论文] 电子学报--2023, 51(12)代劲 张奇瑞 王国胤 彭艳辉 涂盛霞变分图自编码器是图嵌入研究中重要的深度学习模型,但存在着先验正态分布缺陷、训练过程中容易出现后验塌陷等问题.本文从建立云概念空间与隐空间的映射关系入手,引入云模型数字特征对网络中的节点进行不确定性概念表示,...参考文献和引证文献
参考文献
引证文献
本文读者也读过
相似文献
相关博文
基于多维云概念嵌入的变分图自编码器研究 Research on Variational Graph Auto-Encoder Based on Multidimensional Cloud Concept Embedding
基于多维云概念嵌入的变分图自编码器研究.pdf
- 文件大小:
- 2.29 MB
- 下载次数:
- 60
-
高速下载
|
|