文档名:基于双级对齐部分迁移网络的旋转设备故障诊断
摘要:随着智能制造和工业大数据的快速发展,迁移学习在旋转设备故障诊断领域得到了广泛研究.在工业现场,存在大量目标域标签空间为源域标签空间子集的场景,现有迁移学习方法在处理此类场景时,无法消除源域离群类别对目标域分类产生的负迁移影响.部分迁移学习通过限制源域不同类别数据在特征对齐过程的贡献度,实现源域和目标域共享类别特征对齐.然而,现有部分迁移学习方法仅考虑源域和目标域共享类别边缘分布对齐,未考虑源域和目标域共享类别各子类间的状态分布对齐,诊断正确率仍有待提高.为此,本文以VisionTransformer网络为基础网络架构,提出基于双级对齐部分迁移网络的故障诊断方法:一方面构造加权平衡机制促进源域和目标域共享类别间的边缘分布对齐,另一方面利用度量学习实现源域和目标域共享类别各子类间的状态分布对齐.利用滚动轴承故障数据对所提方法进行验证,结果表明:所提方法在所有诊断案例中的准确率均在95%以上,相比其他对比方法表现出更优的诊断效果.
作者:俞昆 程玉虎 邢镔 王雪松 Author:YUKun CHENGYu-hu XINGBin WANGXue-song
作者单位:中国矿业大学信息与控制工程学院,江苏徐州221116;重庆工业大数据创新中心有限公司工业大数据应用技术国家工程实验室,重庆400707中国矿业大学信息与控制工程学院,江苏徐州221116重庆工业大数据创新中心有限公司工业大数据应用技术国家工程实验室,重庆400707
刊名:电子学报 ISTICEIPKU
Journal:ActaElectronicaSinica
年,卷(期):2023, 51(12)
分类号:TP181
关键词:双级对齐 加权平衡机制 度量学习 部分迁移学习 旋转设备
Keywords:double-levelaligned weightingbalancemechanism metriclearning partialtransferlearning rotatingequipment
机标分类号:TP391TP181TH133.3
在线出版日期:2024年3月13日
基金项目:基于双级对齐部分迁移网络的旋转设备故障诊断[
期刊论文] 电子学报--2023, 51(12)俞昆 程玉虎 邢镔 王雪松随着智能制造和工业大数据的快速发展,迁移学习在旋转设备故障诊断领域得到了广泛研究.在工业现场,存在大量目标域标签空间为源域标签空间子集的场景,现有迁移学习方法在处理此类场景时,无法消除源域离群类别对目标域分...参考文献和引证文献
参考文献
引证文献
本文读者也读过
相似文献
相关博文
基于双级对齐部分迁移网络的旋转设备故障诊断 Fault Diagnosis of Rotating Equipment Based on Double-Level Aligned Partial Transfer Network
基于双级对齐部分迁移网络的旋转设备故障诊断.pdf
- 文件大小:
- 2.71 MB
- 下载次数:
- 60
-
高速下载
|
|