返回列表 发布新帖

基于物联感知数据和张量融合的电力变压器绕组绝缘劣化评估方法

15 0
admin 发表于 2024-12-14 11:43 | 查看全部 阅读模式

文档名:基于物联感知数据和张量融合的电力变压器绕组绝缘劣化评估方法
摘要:针对目前缺乏依托在线物联感知数据的电力变压器绕组绝缘劣化评估方法的问题,该文考虑电、热、机械劣化因素对电力变压器绕组绝缘的损伤累积效应,提出基于物联感知数据和张量融合的电力变压器绕组绝缘劣化评估方法.首先,研究电、热、机械因素对绕组绝缘的累积损伤机理,依托电压、电流、温度、局部放电物联感知数据构建变压器绕组绝缘的电性能、热性能和机械性能劣化损伤指标;然后,构建三种劣化损伤指标的特征张量,基于张量融合对三种劣化损伤指标进行特征融合,提取劣化损伤指标间的高维劣化特征关联信息;最后,采用基于自组织映射网络(SOM)的最小量化误差方法构建绕组绝缘的综合劣化评估指标,实现对绕组绝缘劣化状态的评估.该文通过多种评价准则评价构建综合劣化指标,算例结果表明,所提方法能准确评估变压器绕组绝缘的真实劣化程度.

Abstract:Onlineevaluationofwindinginsulationdegradationisofgreatsignificancetothestableoperationoftransformers.Duetothelackofcorrespondingonlinesensingmeans,thetraditionaldegradationevaluationmethodsrelyingondatasuchasfurfuralcontentandmethanolcontentinoilcannotrealizetheonlineevaluationofwindinginsulationdegradation.Mostofthedegradationevaluationmethodsbasedononlinesensingdata,suchasvoltageandcurrent,onlyconsidertheinfluenceofasinglefactor.Itisdifficulttofullyreflectthedegradationdegreeofwindinginsulation.Therefore,thispaperproposesapowertransformerwindinginsulationdegradationevaluationmethodbasedonIoTsensingdataandtensorfusion,consideringtheinfluenceofelectrical,thermal,andmechanicalfactorsoninsulationdegradation.Itreliesonvoltage,current,temperature,andpartialdischargeIoTsensingdatatorealizeonlineevaluationoftransformerwindinginsulationdegradation.Firstly,thecumulativedamagemechanismofwindinginsulationdegradationcausedbyelectrical,thermal,andmechanicalfactorsisanalyzed.ThetransformerIoTsensingdataofvoltage,current,temperature,andpartialdischargeisusedtoconstructtheelectrical,thermal,andmechanicalperformancedegradationdamageindicatorsofwindinginsulation.Then,basedontensorfusion,featurefusionofthreedegradationdamageindicatorsisperformed,andhigh-dimensionaldegradationfeaturecorrelationinformationbetweendegradationdamageindicatorsisextracted.Finally,theminimumquantizationerrorofaself-organizingmapisusedtoquantifythedistancebetweenthedegradationfeatureoutputtensorandthebestmatchingunitweighttensor.Acomprehensivedegradationevaluationindexisthenconstructed,andtheonlineevaluationofthewindinginsulationdegradationdegreeisrealized.Basedontheacceleratedagingtestdata,thetrendevaluationvalue,monotonicityevaluationvalue,robustnessevaluationvalue,scalesimilarityevaluationvalue,andfusionevaluationvalueofthecomprehensivedegradationevaluationindexare95.78%,100.00%,99.75%,93.24%,and97.19%,respectively.Themeanabsolute,meansquare,androotmeansquareerrorsofthecomprehensivedegradationevaluationindexarelessthan0.05.TheR-SquareandPearsoncorrelationcoefficientsexceed97%,andthesignificancetestcoefficientislessthan0.01.Comparedwithtraditionaldegradationevaluationmethods,thefusionevaluationvalueoftheproposedmethodexceeds95%andhasahighersimilarityintrendwiththefurfuralcontentindexofwindinginsulation.Theconclusionsareasfollows:(1)TheproposedmethodreliesonthetransformerIoTsensingdatatoquantifythecumulativedamagecausedbyelectrical,thermal,andmechanicalstressesonwindinginsulation.Itcanaccuratelydescribethedegradationtrendofwindinginsulationundermultiplestresses.(2)Theproposedmethodfusesthefeaturetensorsofelectrical,thermal,andmechanicaldegradationdamageindicatorsbasedontensorfusion,whichcanextractthehigh-dimensionaldegradationcorrelationinformationbetweendegradationdamageindicatorstothegreatestextentwhileretainingthecharacteristicsofeachdegradationdamage.(3)Theproposedmethodcanaccuratelydescribethedegreeofdeviationbetweenthewindinginsulationdegradationstateandthehealthystatethroughthecomprehensivedegradationevaluationindexconstructedbytheminimumquantizationerror.(4)Accordingtotheexperimentalresults,theproposedmethodcanaccuratelyevaluatetheactualdegradationstateofthewindinginsulationbasedonthetransformerIoTsensingdata,andtheevaluationresultscanprovideareferenceforthemaintenanceofthewindinginsulation.

作者:曲岳晗  赵洪山  程晶煜  马利波  米增强Author:QuYuehan  ZhaoHongshan  ChengJingyu  MaLibo  MiZengqiang
作者单位:华北电力大学电气与电子工程学院保定071003
刊名:电工技术学报
Journal:TransactionsofChinaElectrotechnicalSociety
年,卷(期):2024, 39(4)
分类号:TM41
关键词:电力变压器  绕组绝缘  劣化评估  物联感知数据  张量融合  
Keywords:Powertransformer  windinginsulation  degradationevaluation  IoTsensingdata  tensorfusion  
机标分类号:TU393.3TP391.41U442.55
在线出版日期:2024年3月5日
基金项目:国家国际科技合作专项基金基于物联感知数据和张量融合的电力变压器绕组绝缘劣化评估方法[
期刊论文]  电工技术学报--2024, 39(4)曲岳晗  赵洪山  程晶煜  马利波  米增强针对目前缺乏依托在线物联感知数据的电力变压器绕组绝缘劣化评估方法的问题,该文考虑电、热、机械劣化因素对电力变压器绕组绝缘的损伤累积效应,提出基于物联感知数据和张量融合的电力变压器绕组绝缘劣化评估方法.首先,研...参考文献和引证文献
参考文献
引证文献
本文读者也读过
相似文献
相关博文

        基于物联感知数据和张量融合的电力变压器绕组绝缘劣化评估方法  Evaluation Method for Power Transformer Winding Insulation Degradation Based on IoT Sensing Data and Tensor Fusion

基于物联感知数据和张量融合的电力变压器绕组绝缘劣化评估方法.pdf
2024-12-14 11:43 上传
文件大小:
1.07 MB
下载次数:
60
高速下载
【温馨提示】 您好!以下是下载说明,请您仔细阅读:
1、推荐使用360安全浏览器访问本站,选择您所需的PDF文档,点击页面下方“本地下载”按钮。
2、耐心等待两秒钟,系统将自动开始下载,本站文件均为高速下载。
3、下载完成后,请查看您浏览器的下载文件夹,找到对应的PDF文件。
4、使用PDF阅读器打开文档,开始阅读学习。
5、使用过程中遇到问题,请联系QQ客服。

本站提供的所有PDF文档、软件、资料等均为网友上传或网络收集,仅供学习和研究使用,不得用于任何商业用途。
本站尊重知识产权,若本站内容侵犯了您的权益,请及时通知我们,我们将尽快予以删除。
  • 手机访问
    微信扫一扫
  • 联系QQ客服
    QQ扫一扫
2022-2025 新资汇 - 参考资料免费下载网站 最近更新浙ICP备2024084428号
关灯 返回顶部
快速回复 返回顶部 返回列表