文档名:基于重要特征的视觉目标跟踪可迁移黑盒攻击方法
摘要:视频目标跟踪的黑盒攻击方法受到越来越多的关注,目的是评估目标跟踪器的稳健性,进而提升跟踪器的安全性.目前大部分的研究都是基于查询的黑盒攻击,尽管取得较好的攻击效果,但在实际应用中往往不能获取大量的查询以进行攻击.本文提出一种基于迁移的黑盒攻击方法,通过对特征中与跟踪目标高度相关而不受源模型影响的重要特征进行攻击,将其重要程度降低,同时增强不重要的特征以实现具有可迁移性的攻击,即通过反向传播获得的所对应的梯度来体现其特征的重要程度,随后通过梯度得到的加权特征进行攻击.此外,本文使用视频相邻两帧之间相似这一时序信息,提出基于时序感知的特征相似性攻击方法,通过减小相邻帧之间的特征相似度以进行攻击.本文在目前主流的深度学习目标跟踪器上评估了提出的攻击方法,在多个数据集上的实验结果证明了本文方法的有效性及强可迁移性,在OTB数据集中,SiamRPN跟踪模型被攻击后跟踪成功率以及精确度分别下降了71.5%和79.9%.
作者:姚睿 朱享彬 周勇 王鹏 张艳宁 赵佳琦 Author:YAORui ZHUXiang-bin ZHOUYong WANGPeng ZHANGYan-ning ZHAOJia-qi
作者单位:中国矿业大学计算机科学与技术学院,江苏徐州221116;矿山数字化教育部工程研究中心,江苏徐州221116;空天地海一体化大数据应用技术国家工程实验室,陕西西安710129中国矿业大学计算机科学与技术学院,江苏徐州221116;矿山数字化教育部工程研究中心,江苏徐州221116空天地海一体化大数据应用技术国家工程实验室,陕西西安710129;西北工业大学计算机学院,陕西西安710129
刊名:电子学报 ISTICEIPKU
Journal:ActaElectronicaSinica
年,卷(期):2023, 51(4)
分类号:TP391.4
关键词:对抗攻击 视觉目标跟踪 黑盒攻击 可迁移性 重要特征 特征相似性
机标分类号:TP391.41TP242.62TN911.73
在线出版日期:2023年7月6日
基金项目:国家自然科学基金,江苏省自然科学基金基于重要特征的视觉目标跟踪可迁移黑盒攻击方法[
期刊论文] 电子学报--2023, 51(4)姚睿 朱享彬 周勇 王鹏 张艳宁 赵佳琦视频目标跟踪的黑盒攻击方法受到越来越多的关注,目的是评估目标跟踪器的稳健性,进而提升跟踪器的安全性.目前大部分的研究都是基于查询的黑盒攻击,尽管取得较好的攻击效果,但在实际应用中往往不能获取大量的查询以进行...参考文献和引证文献
参考文献
引证文献
本文读者也读过
相似文献
相关博文
基于重要特征的视觉目标跟踪可迁移黑盒攻击方法 Transferable Black Box Attack on Visual Object Tracking Based on Important Features
基于重要特征的视觉目标跟踪可迁移黑盒攻击方法.pdf
- 文件大小:
- 5.03 MB
- 下载次数:
- 60
-
高速下载
|
|