文档名:融合FCMRBF的短时交通拥堵状态预测模型
摘要:针对高速公路常发性拥堵路段,提出一种融合模糊C均值聚类算法和径向基函数神经网络的短时交通拥堵状态预测模型.模型基于FCM聚类算法获取历史交通流的拥堵状态标签以及不同交通状态的聚类中心;基于RBF神经网络算法实现短时交通流参数预测.将RBF神经网络预测得到的短时交通流参数代入FCM聚类结果中,得到短时交通拥堵状态标签.通过交通流参数与交通状态的隐含关系,搭建出融合模型的基本计算架构.结果表明:FCM聚类算法训练后的分类结果更加稳定有效;RBF神经网络比对照方法具有更高的预测精度,预测相对误差基本低于1.2%;建立的FCM-RBF模型对短时交通拥堵状态预测的分类正确率达到95%,预测结果准确可靠.
作者:张生瑞 连江南 焦帅阳 周备 Author:ZHANGShengrui LIANJiangnan JIAOShuaiyang ZHOUBei
作者单位:长安大学运输工程学院,西安710064河南城建学院土木与交通工程学院,河南平顶山467036
刊名:重庆理工大学学报 PKU
Journal:JournalofChongqingInstituteofTechnology
年,卷(期):2023, 37(6)
分类号:U491.1+4
关键词:交通工程 短时交通拥堵状态预测 模糊C均值聚类 径向基函数神经网络 智能交通系统
机标分类号:U491.112TP391.41TP183
在线出版日期:2023年6月6日
基金项目:国家自然科学基金,国家自然科学基金,陕西省自然科学基础研究计划项目融合FCM-RBF的短时交通拥堵状态预测模型[
期刊论文] 重庆理工大学学报--2023, 37(6)张生瑞 连江南 焦帅阳 周备针对高速公路常发性拥堵路段,提出一种融合模糊C均值聚类算法和径向基函数神经网络的短时交通拥堵状态预测模型.模型基于FCM聚类算法获取历史交通流的拥堵状态标签以及不同交通状态的聚类中心;基于RBF神经网络算法实现短...参考文献和引证文献
参考文献
引证文献
本文读者也读过
相似文献
相关博文
融合FCM-RBF的短时交通拥堵状态预测模型 A fusion model for short-term traffic congestion state prediction with FCM-RBF
融合FCM-RBF的短时交通拥堵状态预测模型.pdf
- 文件大小:
- 13.75 MB
- 下载次数:
- 60
-
高速下载
|
|