文档名:基于引导Boosting算法的显著性检测
针对现有的基于引导学习的显著性检测模型存在的训练样本不纯净和特征提取方式过于简单的问题,提出一种改进的基于引导(Boosting)的算法来检测显著性,从提升训练样本集的准确度和改进特征提取的方式来达到学习效果的提升.首先,根据显著性检测的自底向上模型产生粗选样本图,并通过元胞自动机对粗选样本图进行快速有效优化来建立可靠的引导样本,完成对原图的标注建立训练样本集;然后,在训练集上对样本进行颜色纹理特征提取;最后,使用不同特征不同核的支持向量机(SVM)弱分类器生成基于Boosting学习一个强分类器,对每幅图像的超像素点进行前景背景分类,得到显著图.在ASD数据库和SED1数据库上的实验结果显示该模型能对复杂和简单的图像生成完备清晰的显著图,并在准确率召回率曲线和曲线下面积(AUC)测评值上有较大提升.由于其准确性,能应用在计算机视觉预处理阶段.
作者:叶子童邹炼颜佳范赐恩
作者单位:武汉大学电子信息学院,武汉430072
母体文献:第十七届中国Rough集与软计算学术会议、第十一届中国Web智能学术研讨会、第十一届中国粒计算研讨会及第五届三支决策学术会议联合会议(CRSSC-CWI-CGrC-3WD2017)论文集
会议名称:第十七届中国Rough集与软计算学术会议、第十一届中国Web智能学术研讨会、第十一届中国粒计算研讨会及第五届三支决策学术会议联合会议(CRSSC-CWI-CGrC-3WD2017)
会议时间:2017年5月26日
会议地点:合肥
主办单位:中国计算机学会,中国人工智能学会
语种:chi
分类号:
关键词:图像处理 显著性检测 特征提取 支持向量机 分类器
在线出版日期:2018年7月24日
基金项目:
相似文献
相关博文
- 文件大小:
- 2.73 MB
- 下载次数:
- 60
-
高速下载
|
|